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The collection treats the problems of the propagation of radio
waves in the waveguide channel Earth-ionosphere, as well as some
questions on the diffraction of waves. One of the articles contains

a review of asymptotic methods of solving differential equations
with a reversal point.

The collection is of interest to specialists in radiophysics,
and undergraduate and graduate students specializing in the field
of the radiophysics of radio-wave propagation.
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ASYMPTOTICS OF SOLUTIONS TO LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS WITH A LARGE PARAMETER IN THE PRESENCE OF REVERSAL POINTS

A.G. Alenitsyn

ABSTRACT: The article is basically a brief re-
view of the results known from literature which
touch on the asynptotic behavior of linear sys-
tems of ordinary differential equations with a
large parameter. The basic facts from the clas-
sical theory, which is applicable when there

are no reversal points, are first given for com-
parison (Section 1), and then the general method
of approaching the problem of reversal points -
the method of decomposition - is examined (Sec-
tion 2). The asymptotics is obtained in Section
3 with the aid of a standardization method over
the real interval containing the simplest re-
versal points. Examples from acoustics and the
theory of elasticity are given in the article.

Section 1. Introduction and Classical Theory

An ordinary differentlial equation is often found in problems
of wave diffraction and propagation, i.e.,

—y'+kp(x)y+q(x)y=0, (1.1)

and then the behavior of solutions to this equation must be known
for k > oo.

Studies [1-3] in which asymptotic expansions of solutions to
systems of ordinary differential equations with a large parameterl
are used have recently appeared. For example, the following system
is found in problems of wave propagation In a layered-nonhomogeneous

elastic medium: -

a4+ k TP |G — R p G+
1—p 1] 0 pmf

o
w

Numbers in the margin indicate pagination in the foreign text.

Similar systems are found in some problems of quantum mechanics
[28] and in the theory of an isotropic plasma [29].




where p = u/v; v = X + 2u; Eé = 1 - 02p/v; mé = 1 - o2p/u; A= A(x);

v o= ulx); o = p(x); k and o are parameters of separation of variables

(k > o0); § is a two-dimensional vector. This system is of the '"con-
nected" type, i.e., it cannot be reduced directly to two independent
equations of second order. It is convenient to write out (1.2) in
the form of a system
- -
Z'=[kA(x, o)+ B(x)]| Z

of four equations of first order, assuming the following:
Z=(2Zy, Zy Zy Z,) = Gy, (o, k 'Gi, E7'G)).

Here and further, the prime designates differentiation by x.

We will consider the general case of a linear system

Z' =kmA(x, R)Z (1.4)

of n equations with a square matrix A(x, k) of p-th order; m > 0 is
an integer. Equation (1.1) is also reduced to a system of this
type (n = 2):

P al® Naea (0 0 ao( )
D=kl o) ZFET, 0)% 2= hy (1.1a)

As regards the matrix A(x, k) in (1.4), we will assume that it is
expanded into a series by degrees of x~t:

Ax, Ry =Y A, (x) k",
v=0

This can be convergent or asymptotic., Even if the matrices
are assumed to be smooth (i.e., have several derivatives),
is continuous.

It is natural to assume that the higher term in (1.5) has most

effect on the behavior of solutions to (l.4) for k >> 1, i.e., that
the matrix A(x, k) can be replaced in first approximation by Ag(x)

-V
(or any matrix B(x, k) A (x By (x ). This idea is directed




in particular to the extensively studied [4-9] example of (1.1).
Actually, it 1s found that this assumption is reliable in a sense, /5
although clarifications are needed even to find the first approxi-
mation. Moreover, the formulas (and corresponding proofs) differ
greatly in the case when there are no reversal points in the inter-

val for change in x under investigation, as well as in the case when
there are such; in the latter case, the problem is much more com-
plicated.

In studying the asymptotics of solutions to (1.4), the eigen-
values A3(x), A2(x), ..., A (x) of the matrix Ag(x) play a very
important role.

The case when all the eigen-values are different is the sim-
plest:

)‘l(x)#)‘}(x)yi#j, i,j=1,2,..., n. (l 6)

The classical Birkhoff-Tamarkin theorem [10, 11] is famous for this
case. It will be formulated here for m = 1 and a real x & la, bl
for the sake of simplicity.

We will call § the infinite, simple connected region on the
complex k-plane.

Birkhoff-Tamarkin Theorem. Let the following conditions be
fulfilled in the interval a ¢ x g b (a, b # @ ): (1) r;(xr) #
Aj(g), i # j; (2) the S region is such that

RQ {k;) (;‘}l X Re lk)‘j-i-l’(x)], j=1v 2» ey M1 l;

(3) Ay(x)E€ §N+1—V[§, bl, i.e., the elements of the matrix A, have
N+ 1 - v >0 continuous derivatives. Then there 1s a fundamental
matrix Z{(x,k) in the interval [a,b]l for (1.4) which had the follow-
ing asymptotic expansion in the $§ region at k + o

-1
Zix, k)=[ N Tx)y k0N ] X

X exp{. e\in - V(i J,(} ,

N
(1.7)
\

where Tg(x) (det Tg(x) # 0) reduces Ag(x) to the diagonal form A (x) =
Ialéozo, the diagonal matrix V(x) and the matrices T;, To, ..., Iy -
1 are calculated in the form of continuous functions by the recur-
rent formulas. The expansion of (1.7) is uniform for [a, bl.




There is a simple proof? to the general theorem (at m 2 1) in
[12]. Different generalizations of this theorem can be found in
[13-15]. With the aid of the classical asymptotic formulas, I solved
in particular, the problem of high-frequency surface waves in a
nonhomogeneous elastic space [1].

Section 2. Reversal Points. Decomposition Method /6

The term "reversal point" is used in different senses by dif-
ferent authors. Thus, any point on the real axis, during the pas-
sage through which the nature of solutions greatly changes, is some-
times called the reversal point. In this study, the term is used
in a narrower sense.

Definition. The point X3 is called the reversal poeint for the
system in (1.4) if two or more eigen-values of the matrix Ag(x) co-
incide at this point, while all the eigen-values are different in
a certain neighborhood of xg; Ag(x) is continuous.3

Thus, very interesting problems linked with the poles and other
particular points of the coefficients of this system are eliminated

from this investigation. The definition of the reversal point used
here naturally generalizes the ordinary definition for (1.1). Actu-
ally, for (1.1) Ay = V¥p, A = -¥p, and A, = A, only if p = 0.

The asymptotic theory for (1.1) in regions containing reversal
points is relatively simple and has been analyzed in great detail
(f4-9, 15, 1671, ete.). A similar theory for general systems has
not been developed to a great extent because of the great complexity
of the problem.

The most general method for simplification of the problem is
the so-called "decomposition method" [17, 18], which will be pre-

sented below.

Let us make a linear transformation, i.e.,

7Pty B) X
v %) (2.1)

then

Koz boB(x RX. Blx. By= PTUAP — PPk, (2.2)

2 Inaccuracy was allgwed in the proof and formulation of the thegorem
in [12]: there AV€ cN-1 is required, from which (1.7) is not obtained
(a corrected formulation is given here).

3

See the case of identically equal roots in [13].




tt is found that, under certain conditions, we can select such a

£
transformation of (2.1) that the system in (2.2) 1s gquasi-diagonal.

“ase 1. x @ D is of a finite complex region We will consider
Alx,k) to be regular in the region [x - EOIS e,'kf z2kg > 0, Iarg k|
= 4y > 03 A,(x) are vegular at |x - Xg| €. As is well known (see
[19]1, for example) any constant square matrix C can be reduced by

such transformation: U~!CU = T to a canonical Jordan form, i.e.,

=|C, Cp ..., Cy;, s n. (2.3)

Here ¢ is a quasi-diagcnal matrix, while the number s of diagonal
blocks (cells) is equal to the number of various eigen-values of
the matrix C. Obviously, we can consider Ag(xgp) to be reduced to
the Jordan Fform.

2ibuva Theorem on Decomposition. In a certain subdomain

lX-JCof<51<e.|kl>k,>ko‘[argk[galgao (2. 1)

there i3 a regular non-singular transformation of (2.1) such that
the matrix B(x,k) in the corresponding system of (2.2) is quasi-
diagonal, i.e.,

Bi{x. k) [B, v k). By(x, k), ..., B.x. kY, s <" n, (2.5)

while the structure of B(x,k) coincides with the structure of the
matrix Ag(xg). The matrices P(x,k) and B;j(x,k) (i = 1, ..., 3) are
expanded in the domain of (2.4) into asymptotic series, i.e.,

= (2.6)
Bi(x. k)~ Y, Bu(x)k™,

y=(

P(x. By~ P(x)k™",
Vel

and Pg(xg) = E is a unit matrix, while Py(x) reduces Ag(x) to a
qua81 diagonal form of the same structure as Ag(Xp)3 the remaining
Q(x) and BV(X) are calculated recurrently. All the matrices in

2. £) are regular in (2.u4).

We can see that the Sibuya theorem aids in simplifying the sys-
tem {(1.4) in the neighborhood of any reversal point, reducing it to
a selection of s £ n systems - cells with a smaller number of equa-
tions in eachy actually the number of equations in the system-cell
No. i




—

Xi=kmB,(x, &) X1, i=1, ..., s (2.7)

is equal to the multiplicity g; of the eigen-value X;(xg).
The Sibuya theorem was applied, for example, to the system in
(1.3) in [20]. 1In the case of (1.3), the reversal points gp(c) and

ES(U) satisfied the following equations, respectively:

0=+ v,(x), o= 7v,(x).

where

2 A4+ 2u
Y lx) ==

RACEES

The following system of two equations is obtained for the
neighborhood of the point gp(c) as a result of decomposition:

i e a+L+0MﬁFi

mp (2.8)
and two individual scaler equations, i.e.,
N 3={F km,+ M-+ O(F)} Xos.
(2.9)
Here
M= Llomd oy (o O}
2 pm; 0 ¢
SRR A AL 4
o o2 p ! T g2
The equations in (2.9) are integrated directly, and the system of /&

(2.8) is easily reduced to one second-order equation of the type in
(1.1).

Although the Sibuya theorem is universal, it has a local nature,
which is inconvenient in practice. In the case of a real x, decom-
position over an arbitrary finite interval can be carried out (see
[17, 211).

Case 2. x (¢ [a, b] for a real interval. We will consider that
A(x,k) and Ay(x) are infinitely differentiable by x and that the
matrix Ag(x) has the following property: the eigen-values of the
matrix Ag(x) can be divided into groups in such a way that the eigen-
values of one group (for any x) are not equal to the eigen-values




of another group (the condition of S.F. Feshchenko).

With these assumptions“, there is non-degenerate, infinitely
differentiable transformatlion of P(x,k) over the entire interval
[a, bl, which reduces the system of (1.4) into the form of (2.2)
with a quasi-diagonal matrix, i.e.,

B(x, k)=|B,(x, k), By(x, k), . . By(x, k)], s<n.
(2.10)

The matrices P(x,k) and B(x,k) are expanded into asymptotic series
with coefficients which satisfy the recurrence formulas. The struc-
ture of B(x,k) is determined by dividing the eigen-values of the
matrix Ag(x) into groups: 1f there are g3 eigen-values in group

i (1i=1,2, ..., s),

A (x), ..t xm‘- (x),
then the following system-cell corresponds to this group:

b e pm . -t X
Xi=km B (xX)+ By ()R 4 L X, (2.12)

and the eigen-values of the matrix Bjo(x) coincide with (2.11).
Here again, as in the Sibuva theorem, the matrix Pp(x) reduces the
matrix Ag(x) to a quasi-diagonal form:

PO—IAOPOE By (x)=: [Biotx), ..., By (x)].

(2.13)

Let us emphasize the wvarying nature of decomposition in the
complex and real cases: in the first case we are examining the to-
tal neighborhood of an indZvidual reversal point, and in the second
there can be any coincidences of eigen-values at any number of
points inside the given group.

The decomposition method is not always suitable for practice,
since, first of all, very stringent conditions are imposed on A(x,k)
(regularity in the complex case, infinite smoothness in the real
case); secondly, after decomposition there must be a special study
of the decomposed systems, and this, generally speaking, is a com-
plicated problem (see [22-247);° thirdly, in order to compute the
further terms in expansions of the solutions, we must make a large
number of calculations, since the recurrence formulas appear twice
in obtaining the decomposed system and in its solution.

4 And some additional ones which we will not Fformulate here (see
(171 and [211).

5 In the cases encountered in practice, the decomposed systems usu-
ally have a simple formn.




Sometimes asymptotic formulas can be obtained without the de-
composition method. In the following section, we will prove a
theorem which, in a sense, is similar to the classical one, for the
case of the so-called "simplest" reversal point. The method for
the proof is a standardization equation; a regular proof of the
classical theorem [12] is carried out essentially by the standard-
ization method. Some new instances appear in the proof given below.

Section 3. Uniform Asymptotics in a Real Interval
Containing the Simplest Reversal Point

Let us consider the system

)/ )._p
( (\;.l)

complex-value matrix, con-

of n » 1 equations with a square n n
a X g b, k = kg > 0 and smooth

tinuous over (x,k) in the region
over x for a fixed k. Let

Ax, Ry~ 2 A, (x) T

v =0 (3.2)

with smooth Ay(x) [the series in (3.2) is convergent or asymptoticl.
The eigen-values of Ag(x) will be A;(x), ..., A (x).

Definition. A reversal point x =
one if the following hold for |x - xol

a) W (0, A (X)£ N (X), j==3, 4, ..., m
0) M(x) %= (x) For iskj, i, j=3, 4, ..., n
&) P)=p M (1) =M P=(x —x) p,(x) p, (£)540, Im p (x)=0

X9 i1s called the simplest
€

For (1.1), this definition coincides with the ordinary defini-
tion of a simple reversal point: p(x) has a simple zero for x = Xg.

We will assume, without losing the generality, that xo = 0,
a £ 0 s$b and py(x) > 0. Let us make the symmetrizing transformation

77 exp [ 4 [o ], (5259

Then the system acquires a form

—~

—>

Z'=k[A(x, = 0s+h) E|Z=rA(x, BZ,




which is convenient in that §;(x) = - 7%,(x), since

=0 () = - (G )+, S=1,2, ..., n (3.8

We will consider that the transformation of (3.3) is alreadyv done, /10
and then Ar3;(x) = - A5(x). Obviously, the transformation of (3.3)
does not change the nature of the reversal point.

Since the eigen-values of Ap(x) are divided into (n - 1) groups:
\; and Az; Az, ..., Ap, such that the eigen-values can coincide
only inside the group; then, as is well known [17], there is a
smooth non-singular matrix Ug(x) which reduces Ag(x) to a quasi-di-
agonal form, i.e.,

1 —rc. ;
m AUUO'—' [S, )‘3, cee s "n]v (2.5)

where 2 x 2 matrix S(x) has the eigen-values X1(x) and Ap(x).

Let us attempt to reduce 8(x) by smocoth non-singular transform-
ation of L(x) to the following special form:

L—JSL=( o 1). (3.6)
px) O
Let
Se=(2 ) te=(} 7
Ss S, Lo
Since X} £ =Xy, then sy = - 871, §2 + 8583 = p(x). It is easy to see -
that we can assume the following zfor arbitrary and smooth 1,, Zy):

L=( Sila 4 Sols l:)

Sl — 83l 1y ) (3.7)
The matrix of (3.7) is non-singular if
L= 2‘5112[4—1_39[2—33[5?':“. a .x . b (3 8)

It is easy to show a simple sufficient condition for the existence
of a smooth non-singular L(x): if s,(x) # 0, then we can assume that
Ly = 1, 1o = 03 if s3(x) # 0, then Zy = 0, Lo = 1.5 1If s, and s3

In the case of the system of (1.3), s,(x) # 0.




can vanish, then the sufficient conditions are complicated and we
will not derive them. In the general case, it can be said that
|§1|+]§2|+|§3[> 0 for all x & [a, bl; it follows, and is easy to
show, that S(x) is reduced to the form of (3.6) locally, i.e., in
the neighborhood of any point of [a, b].

Thus, the transformation

- — —
Z=U,[L; E]} X=UX (3.9)

reduces the system of (3.1) to the form of

X' = (kHo(x)+ By (£)+ £V By (%) + .. ) X,

(3.10)
where
H, (x) = [(;’ (’)); My My o l,.] :
By (x)=UA\U—U'; B,(x)=A,(x), v=2, 3, ...
In the matrix form, (3.10) has the following form: /1
X =(kHy(x)+B,(x)+E'B,(x)+ ... ) X. (3.10a)
On the other hand, the quasi-diagonal matrix
Wik, =1V @ @ @ (3.11)
satisfies the differential matrix equation
W= (kH () £ R G W, (3.12)
if
a'j;exp[kj)\j(t)dt‘,jz& 4, ..., n; Hz(x)=[<? g), 0],
while Y satisfies the matrix equation
y/={k(2 (1))+k—l<?- g)}y (3.13)

1aQ




Since (3.13) is an eguiation of the type in (l.1) in a matrix
form, we can assume the following:

V| J’z" oy = Ay (B - .
(k—!y1 k_l_y2) YJ }/?, Al] ( ?)7 .] 1’ 21

3 X 213 ,
r=g(x)= Tffp(tn”dt signx; r=%, t=
J i Vo

Here Ais(t) are linearly independent solutions to the Airy equation
ALT(L) tAi(t). It is convenient to take Aij(t) = u(t), Ai,(t) =
v(t), where u and v are Airy functions in the definition by V. A.
Fok [2517.

The matrix equation in (83.12) can be called a standard equation
for the original system of (3.1) or for (3.10a). It can be seen
that (3.12) and (3.10a) coincide in the higher terms; however, this
is insufficient even for proof of the coincidence of the higher
terms for the asymptotics of solutions to these equations. Moreover,
if we eliminate B;(x), then, as will be seen below, even the first
term changes asymptotically. Therefore, we will consider a formal
expression of the following type:

X=VP &)W
- (3.14)

Having substituted (3.14) into (3.10a) and having equated the coef-
ficients for identical degrees 5'1, we will obtain the recurrence
system

P5H0=H?'PO, (3.15)
Po+t PoiHy— HoProy = 3, BuiisPy— Po_iH,
§=0
vherev=0Q, 1, 2, ...; P_,=0. (3.186)
Equation (3.15) has a matrix of the following type as a general 12

solution:

— [ % &\
PO‘_ [( N a)“j, ao4, “ ey aon

P8, a,. (3.17)
with arbitrary ag(x), B9(x) and agi(x), 1 = 3, 4, ..., n.
We will examine (3.16) by blocks. Each n * n matrix will be

divided into four blocks; we will number the blocks in the following

11




way:

Hn.—.:(HOI Hoe),p":(bn Pv2) ote.

Hy Ho P Py
Here Hp; and Py) - are matrices 2 x 2 with elements (Hg;)j)x and
(—E—)\)l)ik’ ia k = 1, 23 EOZ = EOB = 0. -
At v = 0, (3.16) is equivalent to the system of equations for

the blocks:
1) Py Py Hy = Hy P, + B, Py 2) P Hy = Hy, P,y + By,Pos;

«:) p13H01=f{o4])13 .+.. BISPOI; 4) P(;4+P1‘H04=H04P14+BI‘P0‘. ( 3.18 )

We find, in particular, from the force equation in (3.18) that
aoj(x)=expy(B,)”-dx, Jj=34,..., n (3.19)

The non-diagonal elements Py, are determined uniquely from this
equation in terms of the elements of the matrices Bj, Hgy, as well
as the already-known elements of the matrix Pgpy. This part of the
procedure coincides with the classical one.

The second equation in (3.18) defines P, singularly in terms
of Byjo2, Hog1, Hoy_and Pgy, since the eigen-values of Hg; are not egqual
to those of Hpy. For the same reason, the third equation in (3.18)
determines Pj3, if Ppj3 is known. The matrix Pg; contains the unknown
functions ag and By; we will find them from the first equation in

(3.18). Let
/ b ¢
p. =% B B. = [ 1)
11 ("{, al)v 1 (dl el 1]

then the first equation of (3.18) gives the following system:

« Lo =1+ b2y + c\Byp,

Bota, =38 + b3 + C1%, :
(p'op), + % p=pa, +dx+ efop, (3.20)
% -+ 11 = pby + d\Bs + egq,.

5

It is well known that, if the square matrices V; and V, do not have
general eigen-values, then the matrix equation VX = XV, has a unique
solution X = 0 (see [17], for example).

12




This wvields the following, in particular: /13

23y = (by+ &) 2+ (d, +c.p) By,

2pB, =d 2+ p [(b, 4 €)) B0+ €1%] — 2'Bo- (3.21)
_ . L _ 1 -
if dy + ¢ci1p £ 0, then we can take 8g = 0, ag = exp x| = (byiteyrdx
(for (1.3), ¢; = d; = 0). de will assume that dg = (ag, Bg) in the
s=eneral case, It is easy to show that the basic matrix wgl(x) cf
(3,21} nas the following form:

c%(xﬁzQ(xﬂl,x—%}, (3.22)

whevre y(x») is smecoth if p(x) and B;;(x) are smooth functions. We
<an take the components of the first vector from (3.22) as ag and
ts and obtain a (smooth) Pgi1(x). The following also follows from

{3,29):

1 =P8 + 2y — byag — ¢, p3,.

o o=a + 8 — by -9,

where ay(x) and B;(x) are still arbitrary.

For @ = 1, a nonuniform system of the type in (3.21) is obtained
from the first block of (3.16) for a;(x) and f;(x), while the free
rm contains the already-known functions. It follows from (3.22)
for the basic matrix that the nonuniform system has a unigque smooth
vectoy sclution, i.e.,

:u’l (-¢) = wy (X) ‘\‘mo"(l‘)?(t)dt, (3.23)

"

- = » o ~ s - - i
where F is a free term of the nonuniform system. For the rest, the
rrocadure for v = 1 repeats the procedure with v = 0. For v > 1,
the arguments are similar.

it iz important to note that, if the initial system of (3.1)

dz infinitely differentiable coefficients, then all the ccefficients
of the formal solution are infinitely differentiable; if (3.1) has
inite smoothness, then only a finite number of continuous P,(x) can

be found (this is sufficient for our purposes). In other words,
Fux) € cM-bla, BT, 1f A (x) € CM7¥la, b1 (0 s v, u = M).

Let us turn to a Jjustification of the formal expansion. As
usual, we will construct an approximating solution, i.e.,

13




N
X =3P (x) E7 W (x, ), N>O.

(3.24)
v u=Q
It is easy to see that (3.24) satisfies the equation /1y
X' = {kA(x, )+ (x, B)}X, (3.25)
where the continuous® matrix '(x, k) = 0(1) at k » . We still show

that there is a real solution X(x, k) to (3.10a) which is close to
(3.24) for k >> 1.

Let us find the following integral equation for X(x, k) by the
method of variation of constants:

X(x)=2X{(x) Co— k™" _f X (x) X1 ()T (x) X (x')dx'. (3.26)

Here Cp is a constant matrix; integration is carried out from a
certain fixed point (for each column of the matrix X) to a variable
point x; part of the arguments of the functions are omitted for the
sake of brevity.

Having introduced

N -1 -1
F= (;Py (x)k“") X, Fz(ﬁp‘, (x)k“') X

vy

N
X T (x) S P, (x)k™°,

y=

we will write (3.26) in the following form:

Fixy= W(x) - & { W, (x) W (x) T (x') F(x') dix’ —
L (3.27)
— kT W (x) W ) T () Fx) dx.

&

Here it is assumed that Lg = E and W = W; + W,; the specific division
of W is one for each j (see below).

8 It is assumed that P,y has a sufficient number of derivatives. Since
I contains Py and P), , then it is sufficient that M = N + 1.

1y




We will assume the following:

t

‘/J(‘C, t)EexP[k 5;'./'(x) dx] . ./= lv 27 e, 1

6

il == kl 4 =
wj(x, k)= TR oy T A0 A =1, 2

It follows from the properties of the Airy functions (see [16],

for example) for x € [a, bl that, for j = 1, 2.

il RIS Clay (x, B,
[F7yj (o B[ SGlwy(x, k) €G>0, (3.28)

~
[
wn

Since det Y = 1,

pa | Y 3’2), V(%) V- (x7) = O (@, (x, E)awy(x', R))-+
k‘lyl - W '
+ O (w, (x, k)@, (X', k)).

whence
W (x) Wi(x") =
1 i
',,_ ’ _T )
=[ _lf\x)l T O, )+ 6, X))
B tle@)*
Zs(x,: X), seen An (.\f', X)] 1
since a1
lej(x', R <lo (D] 127 (0, %),
-> >3
Let us introduce new unknown vectors @i = Elﬁj(g, k). Then

i (x) = Wi(x)wi' (x) — £V X

X [ W) W (@) e @i (1) T (2) B/ (x)dx’ —

~k_Nj$ W-z(x) Wl (X’) wj(xl) wj_’ (X) ’I?(.x’)&;f(x’) dx', (3 . 29)
b

1s




I+ is obvious that, for j = 1, 2,

! X
C (@ ()< el ] Y (k ® +lq>(x)l4)|x,-(x, X'}

Therefore, it follows from (3.29) that, for j=l,...,n,
T = =
L] K Rer -2 jyar

o ey wi(x) - .,
14 (X) [ %4 (X)) —=——= wj o) = — ) i ® (x/) [ 2 e ¥
x X X
kj’Re(X,—%j)dt R g’ Re (A~} ;)dt k (Re(xn_ rj)dt
e * . e x L .e‘? (3.30)

Let us now impose the following condition on the eigen-values
of Ag(x): for a fixed pair of subscripts i, j = 1, 2, ..., 1, with

all x € [f_a 2]:

Re (,,—2) >0 ( or <0).

It is obvious that this is the same condition as the second /16
condition in the Birkhoff-Tamarkin theorem. Because of this con-
dition, for a fixed j, W = W; + Wy can be divided in such a way that

all the exponents in the core are limited for k - + o : if Re(A; -
- %
A:) 2 0, then the i-th column of W(x) will be put under the sign

3

b

(the i-th column of W; then consists of zeros); if Re(ir; - As) 0,
then the i-th zero column in in W, (here the proof does™ “not %iffer
from that in the classical case, see [12]). Further, the function

[¢(x')| % can be integrated, and therefore the 1ntegrals from the
core have (together with the factor k™ ~) order of kX, while the

free term is limited. The method of successive equations immediately
leads to the following asymptotic formulas:

i (x, k)= Wi(x, k)w;'(x, k)4+0(k™), (3.31)
Fi(x, k)= Wix, b+ 0 wj(x, k), (3.32)

or

Zi(x, k)—L(x) ZP ) kW x, kY Ok My (x, RS

v—-O (3-33)




which are valid for j = 1, 2, ..., n; a S xS b. For 4 = 3, 4, ...,
n, (3.33) means that

. Nt il s

-} = W} -y iy 'Yj’ . .
Ziix, k) = U(x) ,\__JPV () k7 H O (A7) Wk, k) (3.3u)

¢

iJlsing the vectors fi/yj, it is easy to find that (3.34) is also
vz21id for § = 1, 2 at x 2 0 (the functions y1,2 do not have zeros
At 2 2 0). At x =2 0, Tﬂl 2 | Zk}/s. Therefore, it follows from
(3.%3) that, in the case under investigation,

=, N Bt — A
7i(x, kY=L W!ER (x) k™ Wi (x, k)—;—O(k v )},j=l 2
{v=0

Thus, we have obtained the theorem.

Theorem. If: (1) the point x = 0 is unique and the simplest
reversal point in the interval x ¢ [a, bl; (2) Re(AL - Aj) do not
change sign (i and j are fixed); (3) A,(x) € cl*1-Vra, pl; (u) the
matrix 3(x) is reduced to the form of (3.6), .hen the basic matrix
of (3.,1) has asymptotic expansion determined by (3.33)-(3.35) for

o+ + oo .
- 4 . . . . . -1/6 17
Eased on (3.33) and using the obvious equality 0 < k +I¢ e
(5)]1/“ £ C¢,, it is easy to obtain the asymptotic formula for the
asie matrizx

N—1
Z(x, k)= U(x) :SPv(x)/e-v_*_O( — =N 1 z)} Wix, k) (3.36)
"m0 (e Flecar®)

which 1s valid for all x € [a
=

bl. It follows from this formula,
in particular, that at x| >

>
€ 0,

N-1
Z(x, k)'=:U(x){2 P ()R +0 (k—”)} W(x, k).

=0 (3.37)
It alsc follows from (3.36) that at a < x< b,
= N1
Z(x, k) = U(x)lz P () Ok )} W(x, k).
y=0 (3.38)
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Formulas of the type in (3.37) and (3.838), which were proven
in [2] for the system of (1.3), were used there in order to investi-
gate the problem of the natural vibrations of a nonhomogeneous elas-
tic film. It was found in this study that the presence of a rever-
sal point causes the arisal of "gquasi-intersection'" of the dispersion
curves, i.e., resonance frequencies of their own type.

Final Comments

o 1. If the reversal point x = 0 is not simple, i.e., (A - A2)2 =
x pi(x), 0 <a # 1, then we can act in a similar way, using the so-
lutions to the equation y"” - k?x%p;(x)y = 0 in order to construct
the standard equations; this equation was studied in [8].

2. In some cases an infinite x-interval must be investigated,
the corresponding generalization of that proposed in Section 1 can
be found in [14, 15]. That presented in Section 3 can also be ex-

panded for this case, and in this regard certain conditions must be
imposed on the behavior of the matrices A (x) for x -+ .
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PROPAGATION OF ELECTROMAGNETIC WAVES IN PLANES AND
SPHERICAL IMPEDANCE WAVEGUIDES

Part I. Construction of the Solution

G.I. 'takarov and V.V. Movikov

ARBRSTRACT : The Problems of the pronagation of
irperlong radio-waves n a surface waveguide
channel formed b7 the surface of the Eavth andi
the ionosphesre, b7 two parallel planes or hLwo
concentric spheres, are formulated in this
ztudr., The general concebpts on the methods of
constructingy the solutions are discuszzid, and

2 formal solution by the methed of normal w~waves
s nrezented for the casze of nlare ani stheri-
o1l waveguides,

Y zre=3al deal of literature has treated the prohlizmns of cropa- /15
gation of electromasgnaetic wavesz in wavesguldes of various tvoes. T
The principal efforts of rasearchers were directed toward a 3olu-
tion of two problems:

1) 4 cornsiderartion of wvarious irregularities
it a studr of the propagation procezszses in wavegui
mlew geometric shape 1] (boundarv conditionsz of th
corresvonding to infinite conductivity of the wavseg
n=2uaily used in thelir studv because of the comolewxi
sraup of problems):

t2) A study of the field in waveguides of the simplest geeo-
metric share, bhut with a consideration of more comnlax Soundar-
condirions, 3as a rule, of the impedance tvne,

fhe 3econd group of problems is investigated most fraquently
in works swhich treat —he problems of oropagation of sup2rlong radio-
vaves 'n a surfacs waveguide channel [2-5] formed b7 the =2urfiacs of
the W?Pfh 3nd the ionosphere. & formulaticn of problems of this
tyoce in terms of impedance is convenient in that it cermits a con-
sideration of the structure of the Earth and the ilonosphere which
iz not uniform in depth, as well as the anisotropic nature of the
latter, when necessarv, which 1s rather simple but not entirely
osrdepred from the mathematical point of view.

Wwa will be interested in the second greoup of rcroblems, and we
will limit ourselves to an investigation of wavecuides formed kv
two parallel Dlaneo or two concentric spheres. e divided this
work into three independent varts for the sake of convsznience in

reading, [n the flrst part
methods of constructing the




mal solution by the method of normal waves. The second and third

parts of the study will treat the problems of the eigen-values of

the problem, using one of the variation methods (method of instances)
and a study of the fields in plane and spherical waveguides. ng

Section 1. Methods of Constructinag the Solution

The s~lution to the problem of a field of given sources in
waveguides of the simplest geometric shape, when the walls of the
waveguides coincide with the coordinate surfaces and there is sepa-
ration of variables in the differential equation for the problem,
was used to construct each of the following diagrams. —_—

1. The given system of sources is expanded by eigen-functions
of the ordinary differential operator connected with the longitu-
dinal coordinate, which is directed along the waveguide axis,. In
this regard, the solution to the problem is also represented in the
form of expansion by eigen-functions of this operator. It can be
seen that this form of the solution is most convenient for inves-
tigating it at relatively small distances from the source. Using
this, after corresponding transformation we have a solution in the
form of the sum of waves reflected once and repeatedly from the
surface of the earth and the ionosphere. The asymptotic expressions
for these waves correspond to a geometric-optical image in the
illuminated region, and diffraction beams in the region of the
penumbra and the umbra.

2. Spectral expansions of the source and fields are constructed
according to the eigen-functions of the operator created by the
transverse coordinate. In this regard, one of the transverse
coordinates will be considered to be cyclical, so that the corres-
ponding differential operator will be an ordinary one. Using the
terminology of P. Ye. Krasnushkin, we will call the representation
of the solution obtained an expansion by normal waves (modes). Tor-
mulas of this type are particularly convenient if the observation
site is sufficiently removed from the source.

We should mention that both forms of the solution are equiva-
lent to each other and expansion of the solution by normal waves
can be obtained from expansion of the first type with the aid of
integral transformation. In the case of a sperical waveguide, this
transformation is called a Watson transformation. The Watson trans-
formation is often used in order to obtain an expansion of the
solution by normal waves from an expansion of the first type in
those cases when a direct approach is complicated for some reason
(for example, in the case of the ionosotropic ionosphere).

In the future, we will consider only expansion by normal waves.
The basic difficulty in this regard is to find in the eigen-values
of the transverse operator of the problem. In order to find them,
it is necessary to solve a complex transcendental equation which
contains spherical Bessel functions in the case of a spherical

N
=
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waveguide [6]. This equation can be solved only when numerical
methods are involved. The need for using numerical methods compli-
cates investigations and does not make it possible to explain the
qualitative picture of the propagation processes and their princi-
pal laws with sufficient simplicity. In the second and third parts
of this work, we attempted to construct approximative solutions in
a closed analytical form with the aid of the method of instances.
In this regard, we will mot try to obtain approximating expressions
of high accuracy, but we will look for relatively simple analyti-
cal formulas for the eigen-values which describe the character of
the solution qualitatively.

2z The possibility of using varia-
tion methods in order to solve the
h problem is due to the following cir-
- cumstance. In the case of boundary

conditions of the impedance type, the
transverse differential operator is

Zo half-limited in the corresponding man-
////_,,———- - ner by an outlined Hilbert space. If
T it is expanded and the Green functions

0 ) of the differential operator are used,

then we can convert to an integral
equation of the second type from the
Fig. 1. differential equation with impedance
boundary conditions., The integral
operator obtained here is found to be not only limited but also com-
Pletely continuous, which guarantees discreteness in the spectrum
of the problem under investigation. This also permits us to use
direct variation methods in solving the problem: the Galerkin
method [7] or the method of instances [8].

Section 2. Construction of the Solution for a
Plane '!'laveguide

Let us consider the problem of the field of a vertical electric

bipole used between two horizontal parallel planes z = 0 and z = h
(Fig. 1), which correspond to the surface of the Earch and that of
the ilonosphere. We will consider that impedance boundary conditions

of the following type are fulfilled on these surfaces:

E = Zgsyrf, (1)

where E: and H; are tangential components of the electromagnetic
field; Zguyp is the surface impedance of the Earth or ionosphere,
and does not depend on the coordinates. The medium constituting
the region between surfaces is assumed to be isotropic and has a

relative permittivity at ey which depends on the vertical coordi-
nate 2.
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The problem amounts to a construction of the solution to Max-
wellian equations for the corresponding boundarv conditions of (1),
In the case under investigation, the electromagnetic field contains
three components -~ Hg, Ez and Ep, while E, and E, are expressed in
terms of H,L, i.e.,

(2)

where Hy satisfies the following equation:

21, d {1 \oH a1 a 1 95

PRSI S DELINS IV & v § e — _ — -’ (3)

oxT T Tm Gy (s,,,) dx ' dp [p dp (PHv)]+EmH¢‘ £ o -
Here the following designations are used: x = kz; o = kr, or di-
mensionless coordinates: k = W, or the wave number under vacuum;

C
Eg = Yo or the characteristic vacuum impedance; e€g and upn are
Eq’ 0

the permittivity and magnetic susceptibility of the vacuum
(eo ~ 8,854+:10-12 F/m, pp = % 10-7 H/m); j is the volume density
of extraneous vertical currents.

The boundarv conditions of (1) have the following form for Hg o
considering (2):

oH,
—o—f—.-——te g, at x =0,
oH o
T —ie,dH, at x=B=khk ()

In (4) the values 6§, and §i are reduced surface impedances of the
Earth and ionosphere, respectively, i.e.,

1 We are using the International System of Units and are examining

a stationary reglme corresponding to a harmonic dependence on time
of the type e-iwt,
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- . ; .
e a2 A= Lzsurw

It iz vreasonable to reduce (3) to a form which dAoes not con-
t4in the first derivative for the coordinate x, for whilich wa must
intradunce a new unknown function Z by the fellowing formulasg

H?Z}’sz, (%)

/23
consequently, this problem is reduced to the construction of a solu-
rion to the equation

LxZ-i-LPZ:? ()
ander the boundarv conditions of
ez ..k _
- — i%gZ at x==0,
(7)
92 %z at x=14
ox

"D
- - _ I~ . . - . . _
In (&) and (7) L, = =7 +9(x) is the transverse differential opera
5 3 . . . . .
torsy Lo = :O . %— 7o o + 1 is the longitudinal differential
ey ;

operator;

P(x)=¢, —I:
1 Loy 3 ( deg 2

sm‘dx2_4€ dx )’

»
5m=5m+ 3 3
m

under the boundary conditions of




s . .
¢ = UL | is the source functionj;

3
kvVen e
st=—=3.c (0)— -t _.%m
0g = 8¢, (0) B (0) Tdx |,
o* i d=
CRLUES A
In the case of a homogeneous medium with ey = 1, the following equa-

tion holds:
A > o\ * —
em—e, =1, Sg==8,, &=28, ¢(x)=0.

In constructing the solution to (6), we will base our argu-
ments on the eigen-functions up of the transverse differential
operation

Lxunz'_p'nuny
Ou, }
ox — ~logu, at x=0, (8)
du >
G- —illy at x=8,
where the value - u, is an eigen-value.

The operator Ly, which is not self-conjugate, has a point spec-
trum [9] and its eigen-functions are orthogonal to the eigen-func-
tions of the conjugate operator uj, so that

8

() = JudTad =0 2t 1 27
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In this case, the eigen-values and eigen-functions of the conjugate /24
operator coincide with the complex-conjugate eigen-values and eigen-
functions of the initial operator, and the condition of orthogona-

lity ultimately acquires the following form:

[te]
~

8
(um ll:,):(ll,,, Z)= § Uppdx=0for nkm. (

-

We will look for a solution to the initial differential equa-
tion in (6) in the form of an exgansion by eigen-functions of the
transverse differential operator<, i.e.,

Z =¥ a,(p)u,(x), (10)

where a, (p) are certain still unknown coefficients of the expan-
s3ion. Having substituted the series in (10) into (6) and having
used the condition of orthogonality in (9), we will arrive at an
ordinary differential equation for determining the coefficients of
expansion ap (p), i.e.,

Lpan— P‘nap:dm ( 11)

where

d = G 8a (12)

" (um l;)

In finding the solution to (1l1), we will first select as a
source a ring of vertical electric dipoles arranged at r = ry and
z = z0g, l.e., we will assume that

We will assume that the operator L, has a simple svectrum. In
the case of a multiple spectrum the expansion will have a more com-
plex appearance [11].
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. Thgd (r —rg) 8 (2 — 2,)

2nr
Here 6 (x) is a delta-function, while Th, = j%dv, where I can mean
the maximum value of the current, and Hy means the effective height
of the antenna., We will construct the solution by the Lagrange
method. The solution should be limited at p = 0 and p = @, which

is necessary to select a Bessel function and a Hankel function Aas
linear independent solutions to the uniform equation in (11):

o=/ (VT =p,p), ea=HP (VT — 1,0, (ImVT—p,>0),

Each of these satisfy one of the conditions. Consequently, the
solution to (11) is constructed in a standard manner. With v, in
the expression obhtained tending to 0, we will ultimately find the
expression of interest to us for a, (p) corresponding to the source
in the form of a vertical electric dipole at the point r = 0 and

Z = Zg:

ikhg ]/1_._—9._" . Uy (Xo) Hsl) (Vl — p)
aP)e

@ (P) - 4 Vem (x0) (i‘m ;n)

The expression for a, (p), together with (10) and (5), make it pos- /25
sible to write out the solution to the problem for the component

Hy in the form of expansion by normal waves. The solution con-
structed should be understood in a general sense.

Since the solution for the component Hg¢ has been constructed
there are no difficulties in finding the expression for other field
exponents according to (2). In application, the vertical compo-
nent of the electrical field is of greatest interest; expansion
by normal waves for this component has the following form:

E,=— Bilolhg 2 ) 22D B %) ) (T
4V om (K en () 0“ ta) T O VT =) (13,
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[f the observation site is sufficiently removed from the source,
1o that there is an inegquality

kP VT —pal > 1,

than we can use an asvmptotic representation for the Hankel func-
rions, and

oo

- zu),:,]h IL ’
E, ~ -t Vﬂ ORI (1u)

vith the following svmbols:

-

Sn=V1-"tn (15)
a u2 (0)
.«n—_‘—- I3l’- 2 . ( - )
m (0) Th— (unv un) L LB

b

Sw

the so-called coefficient of excitation of the n-th normal wava
ode):

. / em (0)  Up{(X0) (z) = m(0)  up(x) (179
fn( 0)" ." (xo) ?1,,—(0) f" 2)= l tm(X) u,.,(O)

az the altitude factor.
[+ follows from (l4) that the phase velocity of the n-th mode
along the Earth's surface is equal to

pn) = ¢ = ¢

pn ReS: ReVT—p, (18)

L]




The change in amplitude of a single normal wave in dependence on
the distance is caused first of all, by the cylindrical divergence
of the wave (factor of 1/vYr) and, secondly, by exponential attenua-
tion (e~ %nTr) because of energy losses due to the impedance boundary
conditions (absorption of energy on the Earth and ionosphere). The
coefficient of attenuation ap is determined by the following ex~-
pression:

@, =klmS,=kIim} 1T ~ o,

n

The expressions in (13) and (1l4) represent a formal solutiocn
in the form of expansion by normal waves. For a further study of
the solution we must determine the eigen-functions u, (x) and the
eigen-values - up of the transverse differential operator, c.f.
(8). This is usually done in the following manner.

We will assume that we know two linearly independent solutions
to the equation

Lxu + }-'-ll = 01

which we will call

uV =4, (x, p), d¥=0,(x, p).

Thus, in the case of a homogenuous atmosphere (en = 1), such solu-
tions are trigonometrical functions, i.e.,

b (x, p)=sinVpx, ¢,(x, p)=cosVpx.

We will look for the eigen-function up in the form of a linear com-
bination, i.e.,

1, (x)=C9, (%, 1) T Coda (X, 1).




Having substituted (20) into the boundary conditions for the oper-
ator Ly, c.f. (8), we will obtain a system of two uniform alge-
braic equations relative to Cj; and Cop. In order that this system
might have a non-trivial solution, its determinant should be equal
to zero:

’

[4:0, 1)+ % 42 0, )] [02(3, ) — 3% B, )] — (21)
— 918, »)— 39,8, W] [92(0, p)+ B 4. (0, p)] =0.

Here the prime designates the derivative for x.

Egquation (21) is a transcendental equation used for finding
the eigen-values up,. In the case of g = 1, it is reduced to the
following form:

Y Skl (22)
o 8g8; )

tan Yup=--

Thus, the problem of determining the eigen-values of the opnerator
L, (as well as its eigen-functions) is based on a solution to the
transcendental equation (21).

However, in order to find the eigen-values of the operator
Ly, c.f. (8), we can also use other methods, particularlv direct
variation methods. It is these problems which we will examine in
the subsequent parts of our study.

Section 3. Solution in the Case of a Snherical “Yaveguide

A solution to the problem of a spherical waveguide is con-
structed according to the same scheme as that for a plane one. In
the case of a radial electric dipole in an electromagnetic field,
there are three components - Hg¢, Ef and Er (we will use a spherical
system of coordinates) (Fig. 2.). The components Es and Egr are
linked with Hg in the following way:

. Z I
Ey=-—-i =2 'W(XH")’

€m




The following equation holds for Hy:

< o <XH¢>+

1
1 /] i J
e "a‘é’[_—‘sme '30‘(5‘“9”?)] -

+enfly = k.Xdﬁ’

We will consider that ey depends on the radial coordinate R, i.e.,

that ey = ep(X). In (23) and (24), X is a dimensionless radial
coordinate:

X=kR. (25)
Boundary conditions of the impedance type, such as in (1), are
fulfilled on the surface of the Earch (R = a) and the ionosphere
(R =d = a t+ h). Thev lead to the following boundary conditions for
H¢:
dX (XH?)—':“tEmO XH at X=ka=23,,
(26)

W(‘X‘Hv):ismaiXH; at X==ka=_8+13(B=~kh).

In solving (23), a new unknown func-

tion U with the following formula must
be used instead of Hg:
A
! v==R s (27)
e }/Em
e X —
o . Consequently, we arrive at the following
// equation for U, based on (24) and (26):
//
I ;'LXU“{"'LQU:f (28)
Fig. 2. e .
= as well as the boundary conditions /28
3% ——la U at X=§01
U X348 (29)
at ==V~ ’
0X l&[U

where the following symbols are used:

Ly=X* - e (X)X




or the radial (transverse) differential overator;

J 1

a
Le_‘%‘.sinﬁ'-{;@_sme
~r the angular (longitudinal) differential operator;
. d2: 4 [/ dey \B
Em((-)—s (/\)_{__"' ax: 4g? (dX ’
m
D .
o= = - 21 is the firzt Ffunction:
FEnpven 38
~* ~ l‘ dSm
3e=28g8m (B) — 53— 2& |, .5
g'm 2Em ax xzan’
8 =t B0+ 8) + i |
Sm X=8,+8
e will look for a solution to (28) in the form of an expan-
zion bv eigen-functions of the radial differentlial onerator;
U=, ()2, (X),
n (:;’(r)
sph
Lx’U =k,
M — g, at X =B, (31)
oX "
o * —_—
S = v, at X=f+8
The operator L, is not self-conjugate and hias a point scvectvum | 1.°
Irs 2icen-functions are corthogonal to the eigen-functions of the
» ki N N > .
conjugare operator v, with 1/X<, i.e.,
ﬁcj"p — (39
1 -\ VU, ;. . S R4
(’L’nv —X‘;r’vm)—- Xz axX= at ns=m
"k
Tince the eigen-functions and the eigen-valueg of the conijuzate
aperator under investisation are squal to the complex-conjugate
<igen~-functions and eigen-values of the initial onerator, ths con- /29
diition of orthogonalitr of (32) is vreducad to the followinsg form:
¢ Bo+p o0 ( .
0 )= Lalm = a n=nm. 33)
(v,., W.J,,)_S MmgX =0 at nF
EN
3

We are assuming that the spectrum is simple.
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Using (28) and (33) for the coefficients of expansion b, (8)
[see (30)], it is easy to obtain an ordinary differential equation

L,bn+(yz, -i-)b,,:e,,, (34)

. %)

s ]
(¢ %)
U v
sph X

and, instead of Ay ¢ we are using vp, according to the following
formula, for the sake of convenience in further computations:

1
PR o (35)

where

whereas the condition Rev, > 0 is imposed on vp for the sake of de-
finiteness.

Let us construct the solution to (34) for this source in the

form of
. Thd(®—08)8(R—1b)
J= 2=R2sin B :
representing a ring of radial dipoles at R = b and 6 = 63. We will

construct the solution by the Lagrange method. Since the soclution
should satisfy the requirements of limitedness at the end of the
interval (0,m), we will select associated Legendre functions of the
first type as linearly independent solutions to the uniform equation
of (34), i.e.,

QI::P: ”L(cose) H (P2=P,l' [COS(‘N'—'Q)],
2 »

L
n 2
each of which satisfies the condition of limitedness at one of the
ends of the interval. Having completed standard computations, it
is easy to obtain a solution to (34). Transferring to the limit
6+C in the solution obtained, we can find the expression of inter-
est to us b,(8) for the radial electric dipole at the point 6 = 0
and R = b:

kelhgu, (Xo) P 1 [cos (m —8)]

bn (e)": — n % ( = ’ ( a6 )
48 X3V em(Xo) (Um “ﬁ) sin{ v, — 3=

where Xg = kb.
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Formulas (27),(30) and (36) also vield a solution to the pro- /30
blem under investigation for the component Hy in the form of an
expansion by normal waves. Using (23) it is easy to find the ex-
pansion by normal waves for the radial components of the electrical
field, i.e.,

ioplhg
Ep=— ————=
4 y/-em(X)Em(X(,)
d a 1 P cos (= —8 (37)
k(v —-T)v,,(_X)v,,(XB) SRR
X - — -
x%x? (v,., —‘-"—) sin (‘«n - ';—)ﬂ
n=0 0 Xz
If the observation site is sufficientlv removed from the emitter
and from its antipode, so that the inequalities below are fulfilled
simultaneously,
m
19,18 > Land]y, I (=—8> 1, (38)
then we can use their assvmptotic representation for the Legendre
functions. Moreover, since the eigen-values of v, have a positive
imaginarv part because of energy losses due to the impedance bound-
ary conditions, then, with the additional condition of
Imv,(r—0)>1
the following relationship holds:
P 1 [cos (= — 8)]
YnT V t— +iv, 8
= — e
sin (v,, - %‘)n “tn SI0 0
Considering this relationship, we can represent the expression for
Ep in a far-removed zone in the following form:
x -
lmJJ /' "‘— ~ o~ = RS, »
g T \O ,
Lp = ] whr 1 smU zAnfn(/\)fn(Xo)e " (39)
n=0
Here the following symbols are used: r = a8, or the distance be-
tween emitter and observation site, reading along the ground;
o . Jn
S’.:—g-: ka
2
~ ~ v;, (Bo)
A= Si‘m =
em (Bo) kh ﬁg (vﬂ' Xl)
or the coefficient of excitation of the n-th mode; 31

4 In the problem under investigation |v,! ~ 0(ka) and, conse-
quentlv, fvn' >> 1 for fregquencies of £ >> 10 Hz.




[T B B vaXo)

I (Xo) = 1/ e (Xo) "Xoe  un(Bo)
2
= em (B fo | ua(X)
fn(X): Vsm(X)'X’ Un(ﬁo)
or the altitude factors.

Hlaving compared (39) and (l4), we see that they have an iden-
tical general structure, except for the factor v6/sinb in the solu-
tion for a spherical waveguide. This factor considers the addi-
tional geometric convergence of the field of the electromagnetic
wave due to the svhericity of the waveguide channel.

The phase velocitv of the n-th normal wave along the ground
surface is given by the following expression for a spherical wave-

guide:
(n) c ka
v h’:—:—:—‘?—, (40)
P pes,  Rev
The coefficient of continuation is equal to
(41)

anzkImS,,:-I—mf-’l-.

The expressions in (37) and (39) represent a formal soclution
to the problem for a spherical waveguide. For a further study,
we must find the eligen-functions and eigen-values of the radial 4if-
ferential operator in (31). Here, just as in the case of a plane
waveguide, it is easy to obtain a transcendental equation for the
eigen-values. The basic difficulty in the investigation of this
solution is finding the roots of this equation. In the third part
of this work, we will examine the problems of determining the eigen-
values of the radial operator with the aid of the method of instances
for the purvose of obtaining approximative analytical expressions. )

In concluding this section, let us touch briefly on the limit
transition from a spherical to a plane waveguide. Instead of the
variable X we will use a new variable x with the formula

X=ﬁ0+xa
where X = kR3; Bg = ka; x = kz; z = R - a, while x lies in the in-
terval (0, 8 = kh). We will now rewrite (31) for the eigen-func-
tions of the operator L, in the following way:
\SPh
= e U,
A= Gogxe O
%“;n — ia;vn at x=0, (u2)
v ot —
X — it v, at x=8§,
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where

0

_ £ X
A= g Tem (003 S /20
o A . i dim ‘ .
G == Ggtm (" — Sem dx ..o
o - i . dep . TN
O :Qism(s)+ 236‘1 dx e Yu
R i d2e,, 3 [degy V2
em (X)=gpm (X) 4 2, Tdxz 42, ( dx | ° {5
we o =honld mention that we redxlaced e,(8,5 + %) by z,(¥) itn (43) -
(u8) - thi=z =simply Is a change in the oriesin in the readinr,

~ p1~
Av, =&, Uy,
&% o =0 (e
= — [GgT at X=VY, 4E)
0x g¥n
9n = ¥v at  x=§
ax
in thiz vegard, in (4813,
pl Sph AP
hp = lim—= lim
T aee 3 gew (R (L7
ihile all the vemalining s-mhols corresnond to (43) - (uUiY, Having
compared The operators L, [see (38)] and A Taee (UAY], we o n 520
Tkat thev are eguivalent to each other, i.2., thelr eigen-functions
zoincide;
v,= limv,= 4,
The esigen-values are linked bv thea foWJOwing ralationshins:
. )\p]_ | ph V?
—-p. == - ]m = h .
n e = (ka)’ anS ra)®
It follows from this relationship, in particular, that vha Ls a value
3t oarder ka. Tf we now zonsider the limit to thn ewnpession in
(37) for Ee at a =+ ogq than we can show that it converts into (13)
for E,. In this regard, we must keap (48) and (u?3) 1 ind, as

w2ll as the asvmptotic representation »f [107 for a -+ «
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Ppas 1605 ( — B)] ﬂ”ﬁ“&_%ﬂ

sin (kaSx) — sin (kaSr)
ImS >0.

= — iH{® (kSr)+ 0 (%) ,
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PROPAGATION OF ELECTROMAGNETIC WAVES IN PLANE AND SPHERICAL
IMPEDANCE WAVEGUIDES. PART II. PROPAGATION OF ELECTROMAGNETIC
WAVES IN A PLANE IMPEDANCE WAVEGUIDE

G.I. Makarov and V.V. Novikov

ABSTRACT: The problems of finding and investi-
gating the behavior of the eigen-values of a
tranverse differential operator in the case of a
plane waveguide are discussed in terms of the
method of direct variations and the method of
instances. The method of instances aids in ob-
taining rather simple analytical expressions
for the eigen-values of the transverse dif-
ferential operator with relatively wide limits
to applicability. These expressions can be
used for a qualitative study of the principal
rules for the structure of an electromagnetic
field in plane impedance waveguides.

In this part of the study, we will discuss the problems of 34
Finding and investigating the behavior of the eigen-values of a
transverse differential operator in the case of a plane waveguide.

In order to obtain clearer physical results, we will assume that

the lower waveguide wall (x = 0) has infinite conductivity (Gg = 0).
As for the normalized surface impedance 8§ = 6; of the upper wall
of the waveguide (x = B8), we will not impose any limitations on it,

except for the requirement of physical practicability Re § = 0 [11].
Moreover, in this study the medium filling in the waveguide 1is
considered to be homogeneous with e = 1.
Section 1. Applying Direct Varjation Methods tn Order
to Determine Eigen-Values

A formal solution to the problem of the field of a vertical
electric dipole in a plane waveguide was constructed in the first
part of the study [2]. A further investigation of the solution
is based on a determination of the eigen-values of the transverse
differential operator Ly, i.e.,

a2 d
Lu-tpu=0, L*’E—dx—z’ d_ix~o=O' (1.1)
=0.

du s
(d_x' — zau)

x=p
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The operator L, is not self-conjugate and has a point spectrum
[3], which we will consider to be simple.

Let us reduce the problem of finding the eigen-values of the
differential operator L, to that of determining the spectrum of a
certain integral operatur. We will select a complex number u@ in
such a way that it does not belong to the spectrum of the operator
L,. We will formulate further limitations on u@ at a later time.
Let us consider a differential operator of the following type:

d?u m du du . .
_—_ Il —_— ] —_— — ibu = VU.
Lt = g+ 084 % x=0 0. ( dx =3 0 (1.2)
Since u™ does not belong to the spectrum of L , there is a limited
inverse operator, i.e.,

KmEL;;l, (1'3)

which is entirely %ontinuous in [,, at the same time. If we now
use the operator K on (1.1), then the latter will acquire the
following form:

a4 pm K™y =0, (1.4)

P‘(m),EP‘_P'(’)n- (1.5)

Thus, the problem of (1l.1l) is reduced to the problem of (1l.4)
of determining the eigen-values of the completely continuous opera-
tor K, In order to solve the latter problem, wWwe can use one of
the direct variation methods, for example the Galerkin method [u4]
or the method of instances [5]. We will discuss the plan of the
method of instances briefly below.

According to this method [5], the operator K™ acting in L,
is replaced by a finite-dimensional operator KB acting in a finite-
dimensional space Hn formed by the elements

20 €L, 2'=K"2, ..., Zii=K"2r-2,
In this regard,

Kr=EK"E,
(m)

where E  is the projector on Hp. The eigen-values up of

operator Kﬁ
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found to be more rapid than that of the geomet
reasing denominator tending to zero.

- . m . .
The eigen-valuss of the operator K ave linked with the rocts
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st the algebralc equation of Ap : E¥
R

(i=1,2, ..., n),

“here the ccefficlents o are determined by the following system /3E
of equations: )
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and 7 = K I In the future, we will be interested in obtaining
1=
rather 51mple apprux1mat1ve analytical forumulas for the eigen-values,
and thus it is necessary that a good approximation be attained for
4 small number of steps (n = 1 or, in the extreme case, n = 2). The
l?tter can be obtained by a corresponding selection of the number
i Ht 1 1
wg and slement Z, In order to understand better how they should
. . . m)” R
e sele2cted, Wwe will consider the expression for ug ’" in first
approximation, i.e.,
, 25 27 N
Mm{)z_._(O 5) (1.6)
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m . . .
Let u. be normalized characteristic elements of the operator

M . (m)” _ m
K, while ui = ui Mo s
eigen-functions of the operator K coincide in this case with the
eigen-functions of the operator L _ of (1.1). Let us represent the

are its eigen-values. Obviously, the

m o, .
element z, in the form of an expansion

m ... h i
zp =Y aup, (1.7)
im0

Then

a; a;
2m—=_ — Y = — —_—uh, (1.8)
' :EH pm : ;FH—Fg ‘

The p~th term in the series of (1.7) 1s the pﬁincipal one if the
element zs is closest to the eigen-function u_ (for z, = uP this
term is unique). Generally speaking, there are two principal terms
in the series of (1.8) in this case: first of all, the p-~th term,
as in (1.7), because of the coefficient of expansion a_j; secondly,

the term with number s, for which the difference My u? is minimal

in modulus. The presence of two prinicpal terms in (1.8) results
in a situation where uf is linked with u and u_, or with ulm)-

. 1,1 . b s P
and u(T) , which 1is the same (u(m) depends, obviously, on the

im) , but the greatest dependence holds for
the cited eigen-values). Consequently, p(m) can have a value which

. (m)~ 121l (m)~
differs greatly from u , as well as from u - . In order to have

- P 8
(m)
1s1

entire spectrum of yu

the value u approximate one of the cited eigen-values, it is

. m .
necessary either to select the element z, as closest to the eigen-

function uz (for a fixed wvalue of p?), or to select u? as nearest
to up (for a fixed selection of zm). Thus, the selection of zm
shouid agree with the selection of u? (or the inverse). In such a

case, there will be one principal term with the same number s in
each of the series of (1.7) and (1.8), so that u(m>’ from (1.6) is
{(m) "~ 1,1

close to the eigen-value Mg . Then, in first aéproximation,
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=15 o, (1.90)
(1)
s

wg on the basis of (1.6) and the expansions of (1.7) and (1.8), on

while it is easy to obtain an estimate of the closeness of u to

the condition that the coefficients of expansion of (l1.7) decrease
rather rapidly:

M| BT Bo- 351 ,0om m
| o By | - —om (P's-l—P's) a (us—l’ u:)+
Bs_1— Mo bl
m (1.10)
s —Hp B4t o om m
PRLAL UL AL — u
Poyr — B0 (P‘_‘-“ P’) as (u‘“' s )
It follows from (1.10) that the degree of closeness of uél) to p
depends on the closeness of z? to the characteristic element u: of

the operator L [see (1.1)] (@ sufficient smallness of the ratios

& a m .
_s-1 and s+1)and on the closeness of uo to the eigen-value us. If

a
<] 'S

we can guarantee these two conditions, then we can expect that the
eigen-values will be found with rather high accuracy in first approxi-
mation of the method of instances.

Thus, in order to obtain rather simple approximative formulas,
it is necessary to present the expansion of eigen-values of the
operator of (1.1). Therefore, before carrying out computations
according to the plan described above, it 1s necessary to study
the problem of the distribution of eigen-values of the transverse
operator for a plane waveguide and their behavior, in dependence
on the surface impedance of the upper waveguide wall, the height
of the waveguide and —he frequency of electromagnetic oscillations.
The following sectlon will treat these problems.

Section 2. Qualitative Investigation of the Ordering
of Eigen-Values for a Plane Waveguide

A transcendental equation was presented in the first part of
the study for the eigen-values p of the transverse operator of the
problem in the case of a plane waveguide [(22) of Part I]. For

ideal conductivity of the lower wall of the waveguide (§ = 0), it
acquires the following form: £

~
w
[es]

|

u3




Ntan n==¢, (2.1)

where

Il

n=Vpp; t=—1id8; 3=23; B==kh

Let us examine (2.1) on a complex plane (n) and let us study the
behavior of its roots in dependence on the value t. The modulus
and argument of t are determined by the frequency, the height of
the waveguide and the nature of the surface impedance of the upper
waveguide wall. Since the only condition imposed on the surface
impedance is the requirement that Re § 2 04 then Im t * 0. In
this regard, positive values of t correspond to purely capacitive
impedance, while the negative values correspond to purely inductive
impedance, and the imaginary values correspond to active impedance
of the ionosphere (Fig. 1).

Before turning to a
detailed analysis of (2.1),

Imt we should mention two of
its general properties:

(t) (1) the roots of the egquation
for the plane (n) are expanded
symmetrically relative to

Ll Ret the origin of the coordinates:

(2) Equation (2.1) has a
x=argt double root which satisfies
the following equation addi-

It tionally, for certain values

of t:

N+ sinncosm=0,

Fig. 1. (2.2)

. . U
As is easy to see, the latter, when in the band mm + — < Re n <
2

nm o+ S , where m is a whole number. In order to find t correspond-
L - =

ing to the double root, we must substitute the solution to (2.2)

into (2.1), -

Let us now rewrite (2.1) in the form of two equations, i.e.,

tsingcosefoshzchs (2.3)

tana= ssingcosc—atshtchs

3 (% 4+ 9 (sintacos?o + sh?x ch? o) ~
[tP= (cos?s -+ sh2t)? ’ (2.4)

uy




where o = arg t, n = ¢ + it, while (2.3) should be supplemented by
conditions defining the sign of the numerator and dencminator of
the right-hand part:

sign cos @ =sign [asinscos 3 — tshtchrj,

‘ (2.
sign sin 2 ==sign [tsin s cos 34-sshzchr]. 2

[S2]
~

Equation (2.3) can be zalled the equation of the line of zeros.
I+ shows on what line on the plane (n) the beam a = const on the
plane (t) transfers. Equation (2.4) makes it possible to deter-
mine the distribution 5f zeros on the zero line (2.3).

~
w)
[¢e]

It was mentioned above that the roots of (2.1) are arranged
symmetrically relative to the origin of the coordinates. There-
fore, we will consider only the case of ¢ 2 0 below. We will
hegin the analysis of (2.3) and (2.4) with an investigatiocn of
the particular cases o = 0 (purely capacitive surface impedance)
and a = - w (purely inductive surface impedance). 1In both cases,
(2.3) acquires the form of

<sinscoss+sshtcht=0 (

2]

[8>)

and has the possible solutions of v = 0 and g = 0. The first of
the supplementary conditions of (2.5) makes the solutions more
precise:

for a=0 =0 at rr<ga< 2";” x, (2.7)
for a=—m <=0 at 2";’ r<e<(n+1)x (2.8)
and s=0 at any =. (2.9)
Fewriting (2.8),
sing shr

—5—Coss = — — C'ht,

it is easy to see that it does not have roots in the range of
g # 0 and t # 0, i.e., the solutions found above are unique.

Let us now turn to (2.4). On the zero lines of (2.7) and




(2.8), where © = 0, it converts into the following:

|t]|=q]| tan'e].

It can be seen from this that the point [t] = 0 on the plane (n)
corresponds to the point ¢ = 0 and ¢ = nm, while for |7]| + o it
corresponds to the point o - 22~%_£ m. On the zero line of (2.9),
where 0 = 0, (2.4) acquires the form of

| ¢|==<shr,
so that 7 = 0 at !T’ = 0 and T > + o for [TI > o . Figure 2 shows
the zero lines for the cases under investigation of o« = 0 and o =

- m and points out the direction where the zeros displace along
these lines in measure with the increase of |T|.

Let us now examine (2.2) in the general case, considering
sin o <0 and ¢ # 0, t # 0, since the limiting case sin a = 0 and
¢ = 0, T = 0 has already been investigated. According to the sec-
ond additional condition of (2.5), the following inequality should
be fulfilled:

tsinscoss-oshtcht<0.

An elementary analysis shows that this inequality takes place only
in the range of T <0 (for us, o > 0).

The possible ranges for distribution of roots of (2.1) can be /i0
clarified in more detail. Let us consider the case of capacitive

surface impedance (cos a > 0). In this regard the first addition-
al condition of (2.5) should be fulfilled, i.e.,

ssimocuse >tshechr. (2.10)

In the range of ¢ > 0 and T < 0, (2.10) can take place only in the
interval of

nn<:c<:jﬁglkw. (2.11)

Le




If the surface impedance has an inductive nature (cos o < 0), then
the first condition of (2.5)

asinocoss < tshtch=

can be fulfilled for any T in the
intervals of

Mtlee<(nd)m,  (2.12)

as well as in the intervals of
(2.11) for values of 1t which are
rather great in modulus.

In order to explain the be-
wavior of the zero lines on the
Fig. 2. plane (n), it is necessary to find
the arrangement of the initial
and final points corresponding to [t]| = 0 and |[t]| = ® . Accord-
ing to (2.4), the value |7 0 corresponds to the "output" points
g =0, T =0and ¢ = nm, T 0. The "input'" points, for which
[Tl = ® , are arranged at o = 22—%—£ m, T = 0, wh.le one of these
points is at IT] = . Using (2.3), it is easy to clarify the
arrangement of this last "input" point, finding the asymptote of
the zero line for 17 » - @ from it:

3
T fane (2.13)

It follows that the corresponding "input" point takes place only
in the case of inductive surface impedance (tan a > 0).

Basing our discussions on (2.3), we can find the first deriv-
atives along the zero lines at the "output" and "input" points:

i{i
ds
a.

»

Thus, the zeroc lines go out from the point ¢, T = 0 at angles which
are twice less than the angles o at which the beams on the plane




(t) go out. The zero lines go out from the points o = nv and T =
0 at the same angles as do the corresponding beams on the plane
(t). The angles of input of the zero lines at the points o =

2n + 1

5 T, T = 0 are found to be equal to - o.

We should mention one general property of the zero line.
Since any given values of ¢ and 1, except the points of "input"
and "output" correspond to one value of a, according to (2.3),
then the zero lines relating to various values of a cannot inter-
sect one another. Consequently, the zero lines corresponding to
the same value of « also do not intersect. Only their tangency
is possible.

The gualitative ideas presented above allow us to represent
the behavior of the zero lines in the case of capacitive imped-

ance. The zero lines go from the "output" points og = mm, Tp = 0
. m . :
to the "input" points oji, Z——%~£ Ts Tin 0, arranged entirely
in the bands
2m - 1
mwn < o< 3

In each such band, the zeroc lines trace the region between the real
axis o = 0 and the line

o sin 26 =1 sh 27, (2.14)

representing the zero line for purely active impedance (a = - —%)2
It follows from (2.14) that, with an increase in the number m,

this range takes on higher and higher values of lTl. A gqualitative
picture for the zero lines for capacitive impedance is given in
Figure 3.

In the case of inductive impedance, the course of the zero
lines is more complex, and it is necessary to have additional

materials for a final explanation of their behavior. First of all,
let us examine the course of the zero lines in the range of

g > 1. v 1. (2.15)

In this case, it is easy to find the approximating equation of the

Lug

/u2




zaearo lines from (2.3):

i

1==7rmn25taﬂ“. (2.18)
A\ T
51t
om0 T .0 & « =0 7
0 - Zz T % 2 21T / 2 —— 3
o=-T
=-T
*=-7
== 1L
x=-3
Fig. 3.

Expression (2.16) describes the behavior of the zerc lines in the
range of (2.15) vrather precisely for the condition of !tan a[ << 1,
and 1is suitable both for capacitive (tan o < 0) and inductive

(tan o > 0) impedance. Consecuently, in the case of inductive
impedance the zero lines are arranged in the bands

2m — 1
3 KS:GS;mR

and go from the "output' points og = mw, Tg = 0 to the "input"
. 2m - 1

points oijp = =—F—— T, Tip = 0 for rather high numbers m and tan
2 << 1 (FPig. u).

Secondly, let us study the zeroc lines in the neighborhcod of
the "input" and "output'" points in more detail, i.e.,

s B 1B, 5K

for the condition of tan ¢ > 0. We can find an approximating
egquation for the zero lines in this range from (2.3):

(“ﬂ"tana'%==rﬁ—2£$2111? (2.17)




If tan o << 1, then we arrive at the following equation:

T (__,)ll tan “'307

In the case under investigation (|Bg| << 1), the latter also fol- /43
lows from the relationship (2.16) examined above. However, if tan -
a >> 1, then it is necessary to consider the second right-hand term

in (2.17), so that

I TC ..
fo=""nz— " Hans (2.18)
\ o = mm_ BT
<
Btan?gy 6=2mdﬁ+(2m+l)n
l%gln // iﬁﬁﬂg/// 2 8tanZa
(1] e SR « 4 AR 2 ¥ é
]
I |
tana << 1 tanct 1
\/L\ s (2m+1)
LT \\ - ‘ts—__.r_n.j___—lr_
=- —_—
tana 2tana
Fig. h.

In this case, the zero lines are parabolas, the qualitative course

of which is represented in Figure 4 for the neighborhoecd of the

points of '"output" {(n = 2m) and "input" (n = 2m + 1). We should

mention that the curves presented in Figure 4 which correspond to

the parabolas of (2.18) in the case of tan a >> 1 describe the

zero lines rather well all the way to the points of intersection
2m + 1

with the lines o = mwm and ¢ = % ™ on the condition that the

stricter inequality is fulfilled, i.e.,

tana > mw.

. . . 1
If the zero line intersects the lines o B m® and o = 22*%—— ™, as

is depicted in Figure 4, then it necessarily goes from the point

50




¢ =mm, T = 0 to the point ¢ = 22_;_£ m, T = 0 (dotted line in

Fig. 4), since it follows from (2.3) that the lines o = %1 inter-

sect the zero lines only at the following points:

nr

T — c————
2tan_a :

Considering the above, we can see that the zero lines behave
in qualitatively different ways for a fixed value of m in the case
of weakly inductive (tan a >> 1) and strongly inductive (tan a <<
1) impedance. The process of the change in course of the zevro VAL
lines as tan o decreases can be explained in the following way.
For some fixed value of m and a rather high value of tan o (tan
a >> mn), the zero lines relating to the two neighboring "output"

points o9 = (m - 1)w, 19 = 0 and o3 = mw, Tg = 0 are loops going
from the "output points to the corresponding "input'" points o;, =
—QE—%—J' T, Tip = 0 and Gin’= a'ﬁ_;i Ty Tin = 0 (Pig. 5). Let us
follow the change in course of the zero lines relating to the left-
hand "output'" points. As tan o decreases, the loops representing
the zero lines going from the neighboring "output" points are more
and more "inflated", coming closer to each other. TFor some crit-

ical value of tan a,p depending on the number m, there is tangency
of the zero lines coming out of the neighboring "output" points,
which corresponds to the arisal of a two-fold root of the charac-
teristic equation in (2.1). In a further (small) decrease of tan o,

At

21
{m-1): —Tn' mit 2

O ot =

tan ai + 1 < tan a:

% (i=1234) '
-

5.

there is a splitting of the zero line going from the left-hand
"output! points. This line now goes to infinity and has the
asymptote of (2.13) found above. The zero line going from the




right-hand "output" point now ends at the left-hand "input" point,
where the zero line corresponding to the left-hand "output" point
had ended previously (for tan o >> tan ogp).

The process of change in course of the zero line we examined
depends on the number m. From (2.2), which defines the position
of multiple zeros, we can find the approximative coordinates of
the points of tangency of the zero lines for m >> 1, and we can
calculate the value of tan acy on the basis of (2.1):

o, == R , Inghm «— )= - i
" 4 ' (tm - Hy= > 7T TG In (4”" +3) L

( m+3)n

tan ogp = Ty (4m 4 3) =

(2.19)

Thus, the greater the value of m the greater the values of tan o
for which there is tangency and further splitting of the zero
lines. With a value of tan o as high as wanted but still finite,
we can find that number m for which tangency and splitting of the
zero lines already took place. With a decrease in tan o, the
splitting process encompasses smaller and smaller values of m.
The qualitative course of the zero lines in the case of inductive
impedance is depicted in Figure 6. The arrows show the direction
of dislocation of zeros along the lines with an increase of )TI.
We should mention that, for a specific value of surface impedance
which has an inductive nature, there is always only one zero line
going to infinity and corresponding to a certain "output" point,
the number m of which depends on the argument of the surface im-
pedance.

The 1deas on the behavior of the zero lines presented above
are of a gualitative nature. Numerical calculations confirm the
validity of the picture for the dynamics of the zero lines we
have drawn. Figure 7 shows zero lines in the band (0,w) found
with the aid of a numerical solution to (2.3). The numbers around
the zero lines on this figure correspond to values of tan a.
Tangency of the zero lines coming from the points o = 0, T = 0 and
¢ = w7, t = 0 takes place at tan asp <= 1.24, which corresponds to
weakly inductive surface impedance of the upper wall of the wave-
guide with argument equal to -38°. In this regard, the multiple
root of (2.1) for the cited value of the argument of impedance
appears in the case when |t| = |68] = 2.6u.

The following results are derived from the general picture we
have examined for the behavior of the eigen-values of u3; (or, more
precisely, n; = v u;8) of the transverse operator of the problem
concerning the field in a plane waveguide.

First of all, an interesting fact is seen in the possibility
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of degeneration of the spectrum of the transverse operator, i.e.
the presence of a multiple eigen-value under certain conditipns.i
This takes place only in the case of weakly inductive surface im-
pedance of the upper environment (ionosphere). For example, in
the case of a uniform upper environment with reduced surface im-
pedance of

where e and o are the relative permittivity amnd conductivity of /47
the upper environment, respectively, the eigen-value which is

least in modulus is found to be degenerate on the condition that

the fregquency of vibrationz and the height of the waveguide are

linked with the properties of the upper environment by the fol-

lowing relationships:

3,8-10° [ 1 5 (em+ 12
T o —— e -~ . ~m
FIKHz] ~ 2200, Ohm_m], h {iem] ~7,2-10 :
4bhmq4
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Fig. 7.

1 K. Budden [6] first noted such a possibility.
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If ep = 1 and 0 = 2.5:1076 T,
f = 4.75 KHz and h = 80 km. These data indicate that degenera-
tion can apparently be observed under real conditions of the prop-
agation of superlong waves in a ground waveguide; however, this
question needs separate investigation with a consideration of the
sphericity of the waveguide channel.

then degeneracy can hold for

Let us turn to the problem of the numeration of normal waves

(modes). As follows from Figure 6, the problem of numeration of
modes in the case of capacitive impedance does not cause any
difficulties. Here it is natural to call the m-th mode that nor-

mal wave whose eigen-value satisfies the following condition:

me < ReVpB < mr + o (2.20)

For such numeration, the modulus of the eigen-value u_ increases ng
monotonously with an increase of the number m, so tha

o | < e | <t (2.21)

Thus, in the case of capacitive impedance the numeration of modes
can be carried out in order of the increase of [uml, which corre-
sponds to numeration of the eigen-values used in the mathematical
literature.

For inductive impedance, the situation is more complex, and,
gencrally speaking, the condition of (2.20) is not fulfilled, while
the conditions of (2.21) are inconvenient for numeration, since,
if they are kept, then numeration of the modes is dependent both
on the surface impedance of the upper wall of the waveguide and

on the height of the latter. From our point of view, the simplest
and most purposeful numeration,of modes corresponds to the "output"
points of the zero lines ocg = mw, tg = 0 (see Fig. 6), so that

the m-th mode represents that normal wave for which

VemB - mx for k- 0(]¢[—0). (2.22)

The proposed numeration is valid for any nature of surface imped-
ance, and, in the case of capacitive impedance, coincides with
the numeration based on (2.20) or (2.21). Moreover, with such
numeration [see (2.22)], the eigen-value of the mode of a fixed
number describes a continuous curve with a change in the height
of the waveguide for given surface impedance.
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Finally, we should mention the instability of single eigen-
values of the transverse operator relative to small changes in
the argument of surface impedance in that case where 1t is induc-
tive. For an example of this phenomenon, we can consider the
eigen-value of the first mode (Fig. 6). For values of t = &R
which are rather high in modulus, the eigen-value corresponding
in our numeration to the first mode can lie in completely dif-
ferent ranges of the complex plane (n), depending on the specific
value of the argument of surface impedance. This can be seen
from the fact that the value n; = /“15 in this case is either
in the mneighborhood of the point o = %1 , T = 0 (Curves 1,2 and
3 in Fig. 6), in a range with a rather high value of ’T' (Curve U4

on Fig. 6), or in the neighborhocd of the point o = %, T = 0

(Curve 5 on Fig. 6). Consequently, with small changes in the
argument of surface impedance around certain critical values (cor-
responding to the points of tangency of the zero lines closest to
the output point of the mode under investigation), there is a
discontinuous change in the eigen-value of a single mode for
rather high values of |t1| exceeding |7|.p at the cited points of
tangency. However, such a change in the eigen-value of a single
mode does not result in instability of the spectrum of eigen-values
on the whole, and is simply a disadvantage of the numeration of
modes we assumed. Actually, it is easy to see that, in a dis-
continuous change in the eigen-value of any mode there is a dis-
continuous change in the eigen-value of the mode neighboring it
(on the left or right), sc that as a result, as the argument of
surface impedance around a critical value changes, the eigen-value
of one mode converts continuously into the eigen-value of another
mode (only the number of this eigen-value changes in the discon-
tinuity, which is not fundamental and is linked with the termin-
ology we used).

Up to now, we have actually been speaking of the eigen-values
of the transverse operator of the problem for fixed frequency with
given surface impedance, and of the change in these values during
an increase or decrease in the height of the waveguide. Therefore,
the curves on FPigures 6 and 7 represent the zero lines along which

the eigen-values (more precisely, Vu;B) displace with a change in
the height of the waveguide h for any given values of the frequency
of electromagnetic vibrations and the surface impedance of the
ionosphere. In application, it is usually of interest to study
the dependence of the eigen-values on the frequency of electro-
magnetic vibrations for given height of the waveguide and given
surface impedance of its upper wall. If the surface impedance

did not depend on the frequency, its change would be entirely
equivalent to the change in height of the waveguide Iin respect to
the effect on the eiger-values (2.1). In this regard, the course
of the zero lines woul( remain as before (see Figs. 6 and 7).
Actually (particularly if we are speaking of the propagation of




superlong waves), the surface impecance most often has a relative-
ly sharply expressed frequency dispersion, so that both the modu-
lus and argument of the surface impedance change with a change in
frequency. In this case, the modulus and argument of the value

t = ~i8B8 also change with an increase in frequency, so that the
deplicted point t on the complex plane (t) (see Fig. 1) displaces,
not along arg t = a = const, but over some complex curve whose
specific course depends on the given frequency dispersion of the
surface impedance. This curve on the plane (n) (Figs. 6 and 7)
ccrresponds to zero lines which apparently do not coincide with
any of the zero lines depicted on Figures 6 and 7. However, using
the data on the course of the zero lines in the latter case and
knowing the values of |1| along these lines, it is easy to find
the behavior of the zero lines for fregquency-dependent impedance.

The zero lines for frequency-dependent impedance will inter-

sect the zero lines corresponding to arg t = const. In this re- /50
gard, 1f the zero line for arg t = const goes out from the "out-
put" point ¢ = mm, T = 0, ends at neighboring "input" points (on

the left or right), or goes to infinity, then the zeroc line can

geo either to infinity or, generally speaking, to any "input" point,
with an increase of |[1] for frequency-dependent impedance. As a
result, with a change in frequency the continuously-changing eigen-
value for some frequencies should be related to one certain mode

in the numeration used, while for other frequencies it shoud be
related to another mode. It is necessary to find whether or not
this phenomenon takes place specially in each specific case,

The possible change in number with a change in frequency for
a continuously-changing eigen-value noted is one more disadvantage
of the numeration of modes we used above. Undoubtedly we could
have carried out numeration of modes in another way in the case of
frequency-dependent impedance, for example with the condition of

Voem3 - mz  for f—0(¢t]—>0). (2.23)

The eigen-value which changes continuously with an increase in
frequency would then correspond to the same normal wave in this
numeration. However, the numeration of modes which is based on
(2.23) also has i1ts disadvantages; in particular, it depends on
the height of the waveguide as well as the specific frequency
dispersion of the surface impedance.

It follows from the above that the numeration of modes which
is based on the conditions of (2.22) or (2.23) is generally dif--
ferent. It is important to emphasize that the problem of numera-
tion of modes is not fundamental, being purely a matter of ter-
minology, and we can use any numeration of modes, noting the
numeration procedure used each time. We gave specific attention
to this problem only because there has been no real clarity con-




cerning it in the literature to this time, and some authors have
related the same eigen-value to different modes [6,7] without
clearly indicating the principle of the mode numeration. In the
future we will keep the numeration of modes which results from
the condition of (2.22).

Section 3, Constructing Approximative Formulas for
the Eigen-Values of a Plane Impedance Waveguide

In the preceding section we studied the qualitative picture
of the behavior of eigen-values of a plane impedance waveguide.
Using the scheme of the variation methods, we can attempt to give
this picture a quantitative nature. Undoubtedly we could solve
the transcendental equation of (2.1) numerically and study the
behavior of the eigen-values numerically, in dependence on the
frequency of electromagnetic vibrations, the height of the wave-
guide and the surface impedance of its upper wall. However, this /9
study would involve a great deal of time-consuming calculations.
This is why it is of interest to obtain rather simple approxima-
tive analytical formulas for the eigen-values, on the basis of
which we could study their dependence on the parameters of the
problem analytically. Moreover, such approximative formulas would
have value in a numerical solution to the transcendental equaticn
of (2.1), since the results they would give could be used as the
initial values of the unknown eigen-values.

In obtaining the approximative analytical formulas for the
eigen-values with the variation methods, we will keep the follow-
ing goals in mind:

(1) Obtaining simple analytical formulas based on one-dimen-
sional approximations of the operator K™. 1In this case, the varia-
tion methods give a value of one eigen-value closest to the select-
ed "center" of u® (see Section 1). If there are two eigen-values
which differ sliightly from one another in the neighborhood of this
"center", then the accuracy of a cne-dimensional approximation
decreases abruptly. Therefore, the formulas of a one-dimensional
approximation do not permit describing the phenomenon of degenera-
tion of which we spoke above.

(2) A further examination of the problems of degeneration and
numeration of modes. For this purpose, we will use two-dimensional
approximations of the operator KM, and we will obtain the formulas
of second approximation for the eigen-values, with the aid of which
we can also estimate the limits to applicability of the first-
approximation formulas.

We will give a great deal of attention to the study of the
behavior of eigen-values of the zerc and first modes below.

Calculations with the aid of the variation methods are carried
out according to the standard plan of [4,5]; however, the accuracy
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and limits to applicability of the formulas obtained will depend
largely on a successful selection of the "center" u? and the sub-
space H_,, with the aid of which the approximation of the operator
K™ is carried out. First of all, as mentioned in Section 1, we
must have the selection of the number u% and the support element

z? agree. It is natural to select the following:

zg’:eosl/;?x, (3.1)

since, in that case when the eigen-value of the operator L, of
(1.1) tends toward u%, its eigen-function, and thus the eigen-
function of the operator K™, tend toward the expression of (3.1).
With this selection of z?, the operator KM of (1.3) acquires the

following form:

Kmy = ome (x, yYu(y)dy,

B K7 (x, y) =
| feos} (w0 iy - Rrcos | uE ), 2 v,
1 e8| cos Voery (xin p 1 - R™cos Vg x) L x>y,
B 1';;71 -~ Btg 1‘:‘,",‘, £

R”‘f_,_ == —
B4 pmtg ) prd

The operator K“ u..ermined by these relationships is found to be
completely continuous, which validates application of the Galerkin
method or the method of instances for finding its eigen-values.

Further, the question of selecting u% is raised. In order
to obtain simple formulas, the ''center'" of u% must be selected
as the simplest one and, as follows from the results of the pre-
ceding section, we must examine two cases - the cases of '"small"
and "large" values of |ég8].

In the first case, it is natural to take for u% its value
obtained in solving the problem with 8 = 0 (the ' pper wall of the
waveguide, as the lower one, has infinite conductivity),

Since we agreed to numerate the modes in correspondence with the
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"output" points [see (2,22)], the number m in (3.3) relates to the
m-th mode,

In the second case, for u? we will select a value correspond-

ing to |8] = ® (so-called magnetic wall),
,
. e Cm4- D
}V‘I"”fno*-——_———zﬂ' . (3.“')

In this formula the superscript m means the number of the "input"
peint. The fixation of the "input" point does not permit deter-
mining the number of the mode unambiguouslyj; therefore, we must

use qualitative vresults concerning the dynamics of the eigen-values
as obtained in the preceding section in order to compare the num-
ber m of some mode in this case. These results show that the )
eigen-value of the m-th and the m + 1l-th modes can be in the neigh-
borhoecd of a given "input" point, with number m depending on the
argument of the surface impedance 8. Thus, for arg § > -39°, the
eigen-value of the zero mode is in the neighborhood of the "input"
point with m = 0. However, if arg 8§ < -39°, then we find the eigen-
value of the first mode, while the eigen-value of the zero mode is
far removed from this "input" point and goes to infinity of B » a .
An analogous situation also takes place for other "input" points.

We can find from (2.19) that m = 1 in (3.4) relates to the first
mode for arg 6 > -16° and to the second mode for arg 8§ < -16°; in /5
this regard, the eigen-value of the first mode tends toward in-
finity for B - w in the range of -39° < arg 8§ < -16°, i.e., the
first mode does not have a finite "input" point, etc,.

We should mention that, when the eigen-value of some mode
does not have a finite "input" point, it is difficult to construct
simple analytical formulas. However, this case is not of interest
from the practical point of view, since the attenuation of the
corresponding mode is great in this regard, and it can simply be
disregarded in calculations of the field. The exception is the
zero mode for purely inductive surface impedance of the upper wall
of the waveguide.

Let us now turn to the results for eigen-values obtained with
the aid of the method of instances. We will begin with the study
of a one-dimensional approximation of the operator K%, i.e.,

K?':E]KME,,

where E; is the projector onto space with basis vector of (3.1).
In the case of a one-dimensional approximation the schemes of the
method of instances and the Galerkin method coincide.
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Going by the scheme presented in Section 1, simple but rather
cumbersome calculation, it is easy to find the following formulas:

(a) Case of "small" |é&8]|

3

7 B__ — i
b “L°ﬁ"‘}/fl & (3.5)
- for the zero mode,
D 405
L/PKOB—Jn“}/I-_jﬁﬁgéjﬁ (3.6)

- for the m-th mode;

(b) Case of '"large" |[&8]

] — 4

Tm o g— 2 !
V., b= m;- “V 320 (3.7)

In (3.5)-(3.7) the branckes of the roots were fixed by the follow-
ing condition for the sake of definiteness:

imVp7B < 0.

A very simple evaluation of the accuracy for the expressions
obtained with (3.5)-(3.7) can be carried out for purely imaginary

values of the surface impedance. In this case, the operator K
becomes self-conjugate, and it is possible to make two-sided eval-
uvations of the eigen-values [4]. The estimate below of the eigen-

value is given by the following inequality:

-1
'

By
|V e |E> { J K™ (x, y)l%dxdy}

As is well known, (3.5)-(3.7) give increased (in modulus) values
of the eigen-values in this case. Having made the corresponding
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calculations for the zero mode and the "small" |88]|, we can obtain
the following two-sided estimate of the eigen-value of zero mode:

r

BIE -y ailasy ) KK
\/li__gog_' 1V&IIB>\/Vl__tzlaer%(W),’ (3.8)

3

where Re § = 0, while the "+" and "-" signs relate to Im § > 0 and

Im § < 0 respectively, and in the first case |‘d ué! = V u;, while
in the second ! V U(l) = 1 \/u?_

Using (3.8), we can evaluate the values of §8 For which (3.5)
is valied with a certain given accuracy, assuming that the precise
value of the eigen-value is in the middle between the boundaries
given by the inequality in (3.8). Tor example, if we are interest-
ed in the values of 88 for which the error in (3.5) does not exceed

10%, then these values lie within the following interval, according
to (3.8):

—5,5 <itp<T 1,1 (Red=0). .3.9)

The results of a comparison of the eigen-values given by (3.5)
and the values obtained as a result of numerical solutions to (2.1)
are given in Table 1.

TABLE 1
i) Vel l ° Error
i | pLl‘precise |l/}”ﬂlp *
—oo 1,571 1,732 10
—4 1,265 1,309 3
—2 1,077 1,095 2
—1 0,860 0,866 0J
1 1,200 1,225 2
1,5 1,630 15730 6
1,7 1.80 1,98 10
1,8 1,89 2,12 12
p) 2,07 2.45 18
3 3,015 o oo

A comparison of the two-sided estimates of (3.9) and the results
of numerical calculations (Table 1) shows that the inequality in
(3.9) gives somewhat decreased limits to the applicability of (3.5);
the precise limits to applicability (for relative error no greater
than 10%) in (3.5) are determined by the following conditions:
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- o <IP<L7 (Red=0), (3.10)

i.e., are very broad.

We can evaluate the limits to applicability of (3.6) in the case/55
of "small" |§8| for the m-th mode at Re § = 0 in a similar way. The
two-sided estimates in this case have the following form:

/ Ins ——
nmw= l/ 1 —-me> l gl.;" o
/1—-— L - (3.11)
m2nt b iwh (i35)2
I R T
(mny: 7 (mr)?

Let us now stlpulate that the difference between the precise

values of \/uls, which we will consider halfway between the limits
given by (3.11) as before, and the approximate value given by (3.6)
must not exceed 0.1.2 Using (2.11), we can then obtain the follow-
ing limitation on 88 for m 2 2:

818 060" (Reb:= 0 (2.12)

As for the first mode, 1t 1s more convenient to evaluate the accur-
acy in (3.8) for 1t by a direct comparison of the precise values of

VpIB found numerically and the approximate values obtained with the
aid of this formula. The result of such a comparison is given in
Table 2.

TABLE 2
t— ; e
o } B precise } Voelos
o -
. ; 4,71 7
—10 1,39 4,81
4 1,03 4,06
9 3,66 3,67
— 1 3,42 3,42
1 2,80 2,78
2 216 2,32
3 20 1,67

2 In examining the m-th mode it is not necessary to find the rela-
tive error, since the relative error tends to vanish with an increase
in the number m, as seen from the inequality in (3.11).
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It follows from Table 2 that, on the condition that
Lt el 17 (Reda=0)

the difference between the approximative and precise results does
not exceed 0.1.

The estimates given for the approximating formulas in (3.5) and
(3.6) for "small" T68| show that they describe the behavior of the
eigen-values rather well for Re § = 0, all the way to values of
IGB‘ which exceed unity. We can expect that this conclusion will
also be valid for Re § # 0.

We were speaking above of the accuracy in formulas (3.5) and /56
(3.6) for "small" |88|. The accuracy of (3.7) for "large" |88] at =
Re 8§ = 0 can .e examined in a similar way. We will limit ourselves
here to an investigation of (3.7) for m = 1 in the case of Re § = 0.
For Im 6 > 0, (3.7) gives the eigen-value of the zero mode, and for
Im § <0, it gives that of the first mode. Tables 3 and 4% show the
precise and approximate figures of the eigen-values of the zero and
first modes, as well as the eigen-values obtained by (3.5) and (3.6)
for "small" |8§8|, for the sake of a comparison.

TABLE 3

| —
Ve’ 3precise‘ V—p-‘;',, B

0,860 0,703
1,077 1,020
1,265 1,254
1,671 1,671

TABLE &4

quﬂprecis% vfp;_ﬁ




It can be seen from Table 3 that, in the case of capacitive sur-
face impedance, the ranges of applicability feor (3.5) and (3.7) are
superposed rather well, and their combined usage [for fSBI < 3,
Formula (3.5); for |68| > 3, Formula (3.7)] leads to a result which
differs by no more than 3% from the precise value. For inductive
surface impedance, the matter is scmewhat different, as follows from
Table 4. Tormula (3.7) for m = 1 gives the eigen-value of the first
mode differing from the precise one by no more than 0.1 at léB! >
4, while (3.6) is applicable for the same accuracy 2at [58[ < 1.7.

Having finished an analysis of the elementary formulas corres-
ponding to the one-dimensional approximation, it iIs interesting to
find the regions on the plane (88) in which the formulas for the
"small™ and '"large" IGEI superpose with given accuracy. These re-
gions are depicted in TFigure 8 for the zero mode. In region I, the
relationship between tke modulus of the difference in eigen-values /57
given by (3.5) and (3.7) and the modulus of one of them does not T
exceed 10%, and in the region II, it does not excred 7%.

Thus, in the case of capacitive surface impedances the simplest
formulas guarantee accuracy which is sufficient for qualitative in-
vestigations, and they make it possible to find the eigen-values for
practically any IGB]. However, for inductive surface impedances
the range of applicability of the simplest approximating Fformulas
i8 narrower. This is connected with the possible arisal of degener-
ation of the spectrum for inductive impedance. In order to describe
this phenomenon, as well as to clarify the limits to applicability
of (3.5)-(83.7) further, it is necessary to examine the following,
second approximation, using the method of instances.

We will illustrate the second
approximation with the example of
the '"center" of uf§ = u§ = 0, and
the selection of that center will
lead us to the approximative form-
(88) ulas for the eigen-values of the
zero and first modes in the case
of "small" |&8|. In order to ob-
tain the second approximation, we
will use the two-dimensional ap-
proximation of the operator ¥°

mdp
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T
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where E, is the projector onto space
given by the basis vectors
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As a result of elementary but cumbersome calculations, we can ob-
tain the following formula:

107
1 ——-xap_ Vl - ;ap_,lasaspz

a1 (1—7o08)

By 0B = (3.13)

The branch of the outer radical is fixed as before by the condition

Im }/uz 0 < 0. As for the inner radical, we will introduce a two-/58
sheeted Rlemann surface for its unlformlzatlon, and, from the branch-
ing point

(%), = 1,64 4-i2,05 3 (3.14)

we will plot on the plane (i88) a break to infinity along the con-
tinuation of the line coming from the origin of the coordinates
(Fig. 9). We will call the upper sheet of the Riemann surface that
sheet on which the inner radical acquires the values of +1 at the

origin of the coordinates. In this case, the real and imaginary
parts of the radical on the upper sheet have signs as shown in Fig-
ure 9. Obviously, on the lower sheet, all the signs are the inverse.

For such a fixation of the
branches of the inner radical in
(3.13), the upper sheet of the Rie-
mann surface corresponds to the
eigen-values of the zero mode, while
the lower sheet corresponds to those
of the first mode. Actually, for
B - 0 we have

— —tbﬁ
V-H, OB 15{5 -0
I—-3

on the upper sheet and
1

Virab= VI [1 4wy * - a2

3
The inner radical inm (3.13) has a second branching point which is

complex-conjugate with (3.14); however, we will not examine it,
since the upper half-plane of the plane (188) corresponds to physi-
cally practicable structures.
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on the lower sheet, which corresponds to the "output" points of the
zero and first modes (o and w, respectively).

Obviously, the branching point of (3.1h) corresponds to the case
of degeneracy, i.e., coincidence of the eigen-values of the first
and zero modes. At the branching point of (3.1u4), |68] = 2.64 and
arg § =~ -38°L0', which coincides well with the results obtained in
Section 2 of this study by the numerical method. This coincidence
shows that (3.13) of second approximation describes the behavior of
the eigen-values of the zero and first modes with a high degree of
accuracy for any arguments of the surface impedance all the way to /59
|68! ~ 3, including the phenomenon of degeneracy of the zero and
first modes. Moreover, we should mention that (3.13) gives numbers
for the elgen-value of the zero mode for arg § > -38°40' and the
first mode for arg § < =-38°4L0' for |§B8|+=, which differ from the
pPrecise value (w/2) by 0.6%.

As we already mentioned in the
preceding section, there was a dis-
cussion between Wait and Bndden
concerning the numeration of modes
and, particularly, the following

/ / question: 1s the zero or the first
(L) mode the principal one in the range
of superlong waves? (Budden ccn-
[ sidered that the zero mode was the
/ basic one, and Wait considered it
to be the first mode.) Using (2.13)
and keeping the numeration of modes
/ ‘/ [ 4/ / we introduced, we can find an answer

IQJ@LﬂQlﬁaﬁxl@Rum to this gquestion. A rather simple
analysis of (3.13) shows that the
mutual role of the zero and first
modes depends on what ratio between
the conductivity of the ilonosphere
0 and the following value is found:

h [x) "

t ] ~ viid ey -+ 1)2

a[-——-
Sl ohm.m

IF 0 > 0cp, then the first mode
(in our numeration) plays the prin-
Fig. 10 cipal role in the range of surer-
long waves, and if ¢ < ggp, it is
the zero mode. The zero mode is then the principal one under the /60
diurnal conditions Ffor propagation (h=70km, ocr = 8-10-% gFFETR)-
= 2.10°°6 63%75)’ and the first mode is principal under the noctur-

.. . - f.106-6 1 - g+3n~-6 1
nal conditions (h 80 km, Ogp 6-10 ohmem > © 8710 ohmm )

In concluding this section, we will touch briefly on an evalua-
tion of the limits to practicability of the first-approximation




formulas (3.5) and (3.7) for the zero mode with the aid of the sec-
ond-approximation formula in (3.13). TFigure 10 shows regions I and
IT in which the difference between results given by (3.5) and (3.13)
does not exceed 10 and 5%, respectively. As for (3.7), the results
cbtained with it differ from those obtained according to (3.13) by
no more than 10% in the range above and to the right of the line

abc on Figure 10. In the same figure, the region where the error

in the second-approximation formula does not exceed 10% is found
above the line dce.

Thus, as has been shown in this section, the method of instan-
ces permits us to obtain rather simple analytical expressions for
the eigen-values of the transverse differential operator with rel-
atively wide limits to applicability. These expressions can be
used for a qualitative study of the principal rules for the struc-
ture of the electromagnetic field in plane impedance waveguides.

Section 4. Discussion of Some Qualitative Rules for the
Structure of the Field in Plane Impedance Waveguides

In this section we will discuss some rules for the behavior
of the electromagnetic field in plane impedance waveguides; the
rules will follow from the topological characteristics of the be-
havior of the eigen-values examined above and the simple analytical
formulas of the preceding section.

Of all the laws of general order, we should mention the phe-
nomenon of degeneration discussed above. It consists of a situa-
tion where some two modes, all of whose properties coincide, exist
for certain parameters of the waveguides defined by (3.14) and (2.19).
If the degenerate modes are the principal cnes in this case (and
this can take place if the modes with small numbers degenerate),
then the instability phenomenon characteristic of the degenerated
state can arise; the instability phenomenon consists In the elim-
ination of degeneration with small disturbance of the properties
of the wall (or frequency), and two modes with close properties
exist in the waveguide. If in this case the disturbance of the
boundary conditions is such that the wave attenuations are identical,
while the velocities differ, then an interference picture arises
and points are found where the field produced by these modes can /61
vanish. In order to evaluate this effect, we will consider a case
close to degeneration for the zero and first modes, so that the
parameters are defined by the following formula:

38 = i (3B), -+ A9, (4.1)

where (68)0 = 2.05 - 11.64, The magnitude of the disturbance is
determined by the complex number An, and
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jaq| L 1. (4.2)

The nature of propagation of the modes is determined, as is well
known, by the function exp (iK,r), where X, is the constant of
propagation of the m-th mode, i.e.,

Kpn=kV1—pm.

Having substituted (&.1) into (3.13) and having used (4.2), for
the case of

B>25

we can obtain the following simple formulas for the constant of
propagation of the zero and first modes, which are valid in the
neighborhoecd of the degeneration point:

Ko,lzk[l (1541 24) & %f;f‘&;,em],
P == 59°

If arg An = -118°, then the attenuations of both modes are
equal for such disturbance of the boundary conditions, and, assum-
ing that their coefficients of excitation have not changed greatly,
we can find that the modulus of their summary field is proportional
to the following value: '

-

2,

e ?.%cos (g; %ll/_ﬁl) .

Thus, as the result of the disturbance of An at a distance
from the source of

::07h/T
Vias|
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the field produced by the zero and first modes vanishes.

Another interesting effect is the attenuation of waves at
IGB] > o, It follows from the general picture for the movement of
the eigen-values (Section 2) that all the eigen-~values except per-
haps one tend toward some real "input" point. A more detailed
analysis shows that in this case and with ImK, - 0% (the modes are
propagated without losses). However, if Im 8§ < 0, then there is
always a mode for which the "input" point is at infinity. The
attenuation of this mode tends toward infinity in this 1limit tran-
sition.® As has already been mentioned, this situation arises for
the zero mode at

90° < arg s < —39°,
and for the first mode at

-16° <7 arg » << —12°

and so forth, see (2.19).

Together with the general rules mentioned above, it is of
interest to discuss the properties of the zero mode in more detail,
since it is the principal one in problems of the propagation of

superlong waves 1in a waveguide channel. For it,
i858
Ko=k 1+ ——pg7 (4.3)
)
3
We should mention that if 6 = i|6|, then a boundary frequency equal

to the following arises for t“e zero mode:

N If the frequency exceeds the critical one in this regard.

5 The exception is the zero mode at 8§ = ~i|§|. If in this case
IGI + o, then the field is concentrated around the upper wall,
while the phase velocity tends to vanish.

70

/69




In the future, in order to obtain simpler and clearer results, we
will consider that

e 1
P ],_ﬂf" (4.u)
3
We will then obtain the following from (4.3):
1 id
~ k —_—
Ko +2h l__[ﬁ_as- (4.5)

Let us explain the problem of the phase velocity of the zero
mode. The latter is equal to the speed of light if

138
Re —Tﬁ- =0,
3

{ — —

i.e., the real and imaginary parts of 88 should satisfy the fol-
lowing eqguation:

o+ (e +3) = (5

where § = &7 4+ i8'7,
Thus , Vph = ¢ on the plane (8B) has the form of a semi-circie
with center at the point Im 68 = - 5 and radium % (Fig. 11). How- /63

ever, only i1ts initial region, the size of which is determined by
the condition in (4.4) and the limits to applicability of (3.5),
can be given physical significance.

Let us turn to an analysis of the attenuation of the zero mode.
Using (4.5), it is easy to find the following formula:

|Afcose

. !
IR, =<+ — =
0 = 3 752
|+ |3 ipsing + b
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where ¢ = arg .

Having considered the dependence of Im Ky on (6|, it is easy
to see that at

8=23

the attenuation is maximum and equal to

3 cos ¢

um Ky),.. T 4R TFsing

i.e., the losses are greater for inductive surfaces than for cap-
acitive ones.

If we consider that 8§ does not de-
Im Op pend on the frequency, it is found that
Gﬁ) the frequency at which attenuation is
maximum is determined by the following

ce>C formula:
Cp<C

. 3c
0, —=— 3 sin ¢,

(ImK,),,. = 315 . CLSL ]

Fig. 11. fhis means that the extremal point in
the particular dependence of attenuation
of the zero mode is found only in the case of inductive grounds.
In tne case of capacitive surfaces and w > wgp, the attenuation
decreases monotonously with an increase in freguency.

A consideration of the frequency dependence of § is of some-
what greater interest for some specific model of the medium. For
example, let us consider the simplest case, considering that a
homogeneous conducting half-space forms the upper boundary of the
waveguide, the conductivity currents in which greatly exceed the
displacement currents (this corresponds roughly to a model of the
ilonosphere for low frequencies). Then

®

__ €oC — s
|51=70V_9 70=V'¢7}T’ - 4




and it is found that attenuation is maximum at a frequency of

1,7
wm.x:-;—-a..:, (’4-6)
¥V Jo
In this case, /o4
14573 "

UMK mae == 7

Having substituted the pzarameters characteristic of the

D layer of
the ionosphere ¢ = 10-6 —b— 1

Thoo > =~ 60 km into (4.6), we Ffind that
the attenuation is maximum for Ffrequemncy of f = 3.6 KHz, which
corresponds roughly to the experimental data. For this frequency
(ImKg) 9.3

0 /max '
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Fig. 12. Fig. 13.

Let us turn now to a study of the structure of the field in
a cross section. TFor the characteristic element of the zero mode,
we will take the function z? as the initial approximation (see

Section 3). We will study its modulus, numbering it so that on
the surface x = 0

[21]lemo =1,




We will examine the complex plane (8§B) and draw on it two semi-
circles: one with center of Re 68 = 0, Im §8 = -2 and radius equal
to 2, and the second with center of Re 68 = 0, Im 868 = -1 and radius
equal to 1, as shown in Figure 12. As a result, the complex plane
(88) divided into a number of regions - regiomns a, b, ¢ and 4.
Depending on where the point characterizing the properties of the
upper wall of the waveguide 1s found on the complex plane (8§B), we
will find the following structures of the fields in cross section
(Fig. 13). Tor region a, the field increases monotonously in
approaching the upper wall. For region b, the field at the upper
wall is greater than that at the lower wall, but its change with

a change in height 1s not monotonous. For region c, the field at
the upper wall is less than that at the lower wall, but, as in

Case b, the change in field with height is not monotonous. Finally,
for region 4, the field decreases monotonously with the height.




FINDING COMPLEX EIGEN-VALUES OF SOME BOUNDARY-VALUE PROBLEMS BY
THE METHOD OF ANALYTICAL EXTENSION OF FUNCTIONS WITH A REAL
AXIS ONTO THE COMPLEX RANGE OF THE ARGUMENT. APPLYING
THE METHOD TO PROBLEMS OF SUPER-LONG WAVE PROPAGATION,
WITH A CONSIDERATION OF THE EARTH'S MAGNETIC FIELD

G.F. Remenets

ABSTRACT: The author shows how difficulties
encountered in applying some results of the the-
ory of super-long wave propagation based on the
apparatus of boundary-value problems are over-
come with the aid of an approach based on an
analytical continuation of the functions with a
real axis of the argument into a complex range
of regularity. Particular emphasis is given to
the "correctness" of algorithms in the computa-
tional semnse.

Section 1. Mathematical Formulation of the Problem

Practical applications of some results of the theory of super- /66
long wave propagation based on the apparatus of boundary-value pro-
blems are connected with great computational difficulties. These
difficulties are generated by the complexity of calculations of
special functions in the complex range of parameters and the argu-
ments.

The computational problem was greatly simplified when the ap-
proach to it was changed. One approach, which was based on the
variation method of instances [1] and which did not use a digital
computer, was discussed in [2]. Our apprcach is based on an analy-
tical continuation of the functions with real axis of the argument
into a complex range of regularity. In this study we will discuss
this approach in connection with the fact that it has made our ideas
about the so-called correct and incorrect problems of mathematical
physics more concrete, has decreased the requisite machine time by
2-3 orders in comparison to the old methods for calculations, and
has aided in solving a group of numerical problems which had not
been solved before because of the complexity of calculations.

Let us consider the following three boundary-value problems ap-
plied to a model of super-long wave propagation in three waveguides,
respectively:

(a) In a plane waveguide with incidence boundary conditions on
the walls "air-earth" and "air-ionosphere”, i.e.,




azl
dx?
4y = — AU,

dx X,

+ k2 cos? YU =0,

dU | | ir s
T .\-,‘-—+1A2U’

(1.1)

(b) In a spherical waveguide with scalar impedance boundary
conditions on the walls "air-earth" and "air-ionsophere", i.e.,

! o
o
2y (e ") o,

dr

dil’ (1.2) L6_7

—_ 8
dr lf. - leb’
i l

dr .
¥

=4 8,0/

(c¢) In a spherical wavegulde with scalar impedance boundary con-
ditions at the "air-earth" boundary and matrix impedance boundary
conditions at the "air-ionosphere'" boundary; matrix boundary condi-
tions arise as a result of a consideration of the anisotropy of the
ionosphere, which appears as an effect of the Earth's magnetic field
[3], i.e.,

d2 1 d 2\ [UT
(dr2 'i—7'7+""2'“7z—)[‘7]—0’
d [xU _f—ia,, 0

i | eViewn | 0, idg!

1 O L [
0 N i XV x=kr, Azl, A22 O 3 i xU '

(1.3)

where V = V+1207; k is the wave number; Ay, As, Ag, §1, 8o, Ai,k
(i,k = 1, 2) are complex constants in the general case; U and V are
certain scalar values by which the components of the intensity of
the electric and magnetic fields in the wavegulide are expressed; x
and r are scalar variables.

The eigen-values for the boundary-value problems of (1.1), (1.2)
and (1.3) are found from three characteristic eguations:
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1— R, R, e+irtz—rcosy = 0; (1.1a)
1 —R, R, 1=0; (1.2a)
(l_ﬂRllévl)(l":.RLRhl)“nRL '_RuRv h12=O, (1.3a)

where ¢ 1is the angle of incidence of the wave at the boundary of
the division; Ry and Ry, are the coefficients of reflection of a
plane vertically-polarized wave from the first and second plane
boundaries; Rv1 and sz are the reflection coefficients of a spher-
ical vertlcall] polarized wave from the first and second spherical
boundaries; Ry and Rh are the coefficients of reflection of verti-
cally and horizontally polarized spherical waves from the first sp-
herical boundary "Earth-air"; 'lRIl"LRL"LR]] and lle_are four

coefficients of reflection of plane waves from the plane boundary
"air-anisotropic ionosphere, non-uniform in electron concentration
N(r) and number of collisiocns v(r)" [5]J; I is a combination of Han-/68
kel functions, i.e., T

1 (eryy 114 (Rra)
T TP PV
1 (kr)y 11D (kry)

The argument of (l.la) 1s the angle of incidence of the wave at
the boundary Y. The argument of Equations (1.2a) and (1.3a) is the
index of the cylindrical functions v, which is connected asymptoti-
cally with the angle of incidence of the wave at the boundary of
the division by the following equation [3]:

v = kr,sin%.

All further discussions will be directed toward a construction
of an algorithm for the solution to (l.la), (1.2a) and (1l.3a).

Section 2. Incorrectness of the Problems of
Mathematical Physics According to Adamar

An understanding of classical correctness in problems of mathe-
matical physics was given by Adamar at the beginning of this century
In modern functional language, it can be defined [8] as the practi-
cability, for the equation

A‘P'::fv
PED,
fEF (2.1)
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of three conditions:

(1) There is a solution to (2.1) for any £ € I;

(2) The solution to (2.1) is unique in ¢;

(3) The solution to (2.1) depends continuously on the right-
hand part of £f.

Here ¢ and F are complete metric functional spaces, for example C!

, while A¢ is a Ffunction with range of defintion of ¢’

hol o

or ;B or W

C ¢ and with range of wvalues of EF'(C F.

In other words, condition (3) means that case when infinitely
small variations in the solution correspond to infinitely small var-
iations in the right-hand part of £. The variations change by the
distance function of that space from which the elements are drawn.

The problem for which the condition of continuity of (3) is not
fulfilled in any of the spaces g},,;E, ﬂ% is the following Cauchy

problem presented by Adamar for Laplace equations [7]:

7
'Eﬁ’+(”z__0’ _‘7f<;x<gjf,
Uj = U] =U =0,
r=—g sy o (2.2a)
P e
0—U~ =e " cosnx.
y
Y =0
It can be seen from a solution to this problem, i.e., /68
1 va
= -e cos nx sh (1ty) (2.2b)

that in any of the enumerated spaces there are always those elements
which are as great as desired in moving into the range y # 0, des-
pite their values on the x axis, which are as low as desired.

For the calculator, the incorrectness means the following accord-
ing to Adamar. An arbitrarily small error in the initial data for
the problem can add to the solution elements which increase more v
rapidly in the process of computations than does the sought-for so-
lution, and then the relative error increases rapidly. We will show
that this danger can be avoided in the computational problems we
have investigated.
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Section 3. Determining the Computational
Covrectness of the Algorithm

Let us define the computational correctness. We will call a
computational algorithm correct if the ratio between the disturbance
and the element itself decreases or remains unchanged during the
calculation process, and we will call it incorrect if this condition
is not fulfilled. Numerical integratiorn of an ordinary linear dif-
ferential equation of second order in the range of exponential
changes in the solutions is an example of a correct and incorrect
procedure, depending on what particular sclution is reguired. IF
Wwe calculate an exponentizlly decreasing solution, then the error
in the initial data genmerztes a second linearly independent solution,
which increases exponentizlly. Therefore, the relative error in-
creases exponentially in the process of calculation, and this pro-
cedure is incorrect in the computational sense. IFf we calculate an
exponentially increasing solution, then the error in the initial
data generates two supplements to the solutionm - both exponentially
increasing and exponentially decreasing. The first addition and
the sought-for solution increase just as rapidly, and the relative
error remains unchanged. This procedure is correct in the computa-
tional sense.

Similar examples can be taken from the practice of calculating
special functions according to recurrence formulas [8] and a solu-
tion to ordinary differential equations of second order by asympto-
tic methods [9].

We should mention that, in the cited examples, the rate of in-
crease in error does not depend on the relative value in the Initi-
al data, and is limited by the rate of increase of the general soclu-
tion to the ordinary differential equation.

The essential difference between the two-dimensional Cauchy pro-
blem for the Laplace equation and the one-dimensional examples pre-/70
sented above is that the magnitude of the increase in absolute error
does not depend on the solution, as follows from Adamar's idea of
incorrectness, and is determined by the magnitude of an increase in
elements introduced into the problem by an error in initial data.
Therefore, if we can avoid elements which increase more rapidly than
the solution in the process of constructing the algorithm, then we
can find an algorithm which is correct in the computational sense.
Consequently, in order to construct a correct computational proce-
dure for a problem which i3 incorrect according to Adamar, we can
approximate, for example, the initial data of the problem by ele-
ments from the set of functions with the same type of change as that
which the unknown solution has, and we can construct an approxima-
tion of the latter from elements of this set. The set of functions
described will be called correct in relation to the unknown solution.
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As is well known, the problem of analytical extension of func-
tions with & real axis into a complex range of the argument is equi-
valent to the Cauchy problem for the Laplace equation. Therefore,
speaking of one of these problems, we will keep in mind the second
one, its equivalent, without special clarifications.

In the following sections we will give numerical examples of a
solution to problems which are incorrect according to Adamar and
which are solved correctly in the computational sense. A set of
Chebyshev polynomials [10] was taken as a correcting set. It can
be seen from these examples that, when we solve a problem of analy-
tical extension for functions of the polynomlial type, the results
are very good; when we solve a problem for Ffunctions which increase
exponentially, the resulis are worse, but satisfactory in the neigh-
borhood of the real axis. In order to improve the results of cal-
culations in the second case, Ffunctions which increase exponentially
in the complex range of the argument, for example the set sin nx
and cos nx, should be taken as the correcting set.

Since the computational recommendations presented above are of
a qualitative nmature, the computational correctness of any algorithm
is established ultimately by numerical experiments.

Section 4. Analysis of a Computational
Problem from Section 1

Let us turn to our problem of Ffinding the first roots of Equa-
tions (1.la), (1.2a) and (1l.3a). In order to overcome the already-
cited difficulties, we applied the following algorithm: according

to the tables of values for the functions Ryi1, Ry ﬁ;l, ﬁvz, ﬁv,
ih, ',Rll,J_RL,_LRII, I,Rl_and I, we constructed approximating poly-

nomials [11] on the real axis of the argument and used them in the
complex range of the argument.

As a rather simple analysis shows, all these functions, except
the last, preserve their numerical order (with the exception of the
neighborhood of zeros and poles) in going from the real axis to the
complex range of the argument., The latter function I is a function
of exponential order.

The theory of approximation by rational functions in the com-
plex range of the argument [12, 131 gives us the following proof.
Let P, (i) be an orthonormalized system of polynomials, and £ (ﬁ)

an analytical function which is regular in the segments (-1, +1),
and let
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f(‘x)=fopo$x)+flpx(x)+ cees oo1)

fa= [l PAIdx
]

be its expansion into a Fourier series. If R is the sum of semi-
axes of the greatest ellipse with focuses at the point ;l, in which

f (%) is regular, then the Fourier series of (4.1) converges [to
the sum f (x)] inside and is arranged outside this ellipse. The
convergence is uniform in each closed set inside the ellipse.
Moreover,

nmifn‘—”n =R, n —roo, (L},Q)

and if En(i) are Chebyshev's polynomials, then we will have the best

approximation in the sense of the least squares.

It follows from this theorem that the results of calculations
according to the algorithm proposed will be satisfactory until we
are sufficie. tly removed from the singularities of the functions.

In order to illustrate what we have said in the preceding
sections, we will give results of calculations of the first roots
of Equations (l.la), (1.2a) and (1.3a) according tc the method
described.

Sectior 5. Numerical Results

The results of a calculation of the first roots for Equation
(l1.la) according to the algorithm described (second to eighth rows

of the table) for k (x -~x ) B 4 are given in Table 1. In order
- T2 1

to evaluate the effectiveness of the method, we had the first row

contain the same root, but that found by direct calculation of the

coefficients RV and RV in the complex range of the angle of
Y1

incidence ¢ of the wave of the boundary of the division according

to the following formulas:

cos P — wuy
) e
R»t’j— COS‘P-’-A] R j—-l, 2.
The constants Aj were assumed to be equal to 0.1 — i0.1l. The second

through eighth rows of the table differ from one another by the
accuracy in approximation of the functions RVj on the real axis

(number of units, the step, the relative root-mean-square error in /7

r
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the units). It can be seen from a comparison of the first and
last rows that, in going from the real axis to the complex range
at a distance of X one order with an interval for the functions
RVj on the real axis, the method used guarantees accuracy up to

the seventh sign (with nine significant digits on a digital computer).

Table 2 compares a calculation of the first eigen-value for
(1.2a) for frequency f£ = ke/2m = 4 KHz, and k(r — p,) = 5.36165,
by the direct method of [I¥] and the method of &nalytical extension

of the functions R R and I, where
Vi, V2

Ru

1
~ lln’H?’(xH o5 + 1

1
I HO () + 55 + By

Xm=Rry
r7.4(1) i °
I H® (x) + 57 — By
Rq,2= o l ;
WHP(x) + 5y — 8 ], _,,

8, =(0,1530809 — i0,2122646) 107",
3,=0,754 — i0,214.

TABLE 1.

Re and Im Parts| Approxi- Mean- Powers of
of the Eigen- mation Square Error| Approximating
value of v, Interval, of Approxi- Polynomials

rad rad mation, € ReR, and ImR,

6,76869269 —
+4-0,10756792
0.79 0,6—1,6
10,12
0.7683 0,6--1.6
4-0,109
+4-0,76868 0,72--0.82
-+0,10753
0,76868 0,72--0,82
+0,10753
0.768692 0,72—0,92
+0,107567
0,768698 0,70—0,87
+-0,107566
0,76869262 ),70—0,87
{ 0,10756793




TABLE 2.

Tabulation by v
Re and Im | Re v/krl Re ¥ Mean-
Parts of and and Square
the Eigen-| In v/kry Im ¢ Accuracy|Approxi-}Step| Num-| Power of Polynomials Approxi-
Value of of mation [ Av | ber | mating the Re and Im Parts of
v Approxi-| Interval of the Functions
mation, Units
E .
R R I |I x ei2k(rg-ry) v
vl v2 krl
513,378 0,962009 _ _ _ _ _ N _
13,1637 0,02466718 o . .
513,384 0,96202 1,25186 -7 501 ) ) _
13173 0024684 oorisez | S01--520 ! 2 E 6 | 10 ,
513,379 _ 1,251850 -8 _ 1 - 0
13.1630 corrsols | 10 501520 t 2 1 ~ | 10
TABLE 3.
Tabulation Tabulation
Re and Im [Re v/kry|Re ¢ @ by Angl; L] - by Sign of v
W owers o:
tiarE? o I an?k Iand 506 £y Polynomials | @ Powers of Poly-
e Eigen-Im v/krq|Im ¢, ok g %I: o © Sl I L e pers
Value of rad |« |gowm]| ™" pproxima~ § .5 nomials App
v Sl (R = ot “lting the Re | 2~} 2 “Imating the Re and
IR A et L B I P G ERCH R h
C0fa o ﬁfg o g'g and Im Parts} g » o4 Im Parts of the
BT 9ol >l o | ED of the el SR s Functions
0 + s
= z«:g ol al=w Functions 24&’ 40-)’ ;‘-H ST )
ol BN 0 A, 0 I x e+sXiTp~T]
s WBy LR I & Ry Ry, v ‘
IRAYN I v
i krl
509,95 0,95559 1,2294 _5 | L21-- - 4 4 o |495— 81l3 8
16,20 003036 | 008966 | =0 | 1077 |13 | Q02| 9 5 | 4 52|30 g|3 8
509,48 0,95471 1,23255 g | LelT— 5 5 4 501— 9] 4 8
11,29 0ooiice | 003tz | #O0 | 1070 fhgg|aont 18 | 5 | 7 5 [Zeo| ||y 8




S.T. Rybachek calculated the ex-
pressions for (5.1) and (5.2) in
the range of complex v _in terms

of the value of H\,(laz)(x), which

© were calculated in terms of the
- i coooccoo . .
e |z integral representation by Som-
- . e merfield. In our algorithm,
i I T TS these expressions are used only /74
Rl e R g for real v in tabulation of Ryj
‘‘‘‘‘‘ -~ B and Ry,, and recurrence formulas
1o B are applied according to the in-
ﬂ:” i coo . L n dex for Hv(l,z)(x).
=X
L The function I changes as
oS the exponential curve decreases
ot é‘ for Im v < 0 and increases for
T S § Im v > 0. This can be confirmed
? 22T BBB3Y by using the asymptotic repre-
o % DD RT3 0303 sentations for the Hankel fumnc-
s tions Hy 1,2)(x%).
2| S
=z The eigen-value obtained by
- - extension of the exponentially
i % A3SC BR85S increasing function I for Im v > 0
. I poxpoc Sacl ek s Sachn i is given in the second row in
=+ o _ Table 2.
= -] o
z & In the third row, it was ob-
<< ~ tained by extension of the func-
& T T tion Ie2ik(ry-ry) v /kry, which
? SBRITLIRBE preserves its numerical order in
& | = THONeYCraTe eIy moving to the upper half-plane.
= RS epmrRs s _ It can be seen from a com-
X PRI PR Du g It i parison between the results of
-~ the first row and those of the
S | o oo m second and third rows in Table 2
I ZEELERREG that the relative error of the
- | x ceedodIsST method is equal to 0(10-6) for
& — the real part and 0(1073) for the
10 | 2383% £33 imaginary part of the roots. The
;‘g SEIESIESESEE necessary machine time for cal-
e, culations according to the method
o Vo A b O e 1 e discussed decreased by two orders
PO A1 I 2 S 30 S i in comparison to the direct method
g ua 5 K S of [14].

The calculational algorithm
2scribed aided in finding the
first eigen-value of (1.3a),
which is generated by the problem
of propagation of super-long waves
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with a consideration of the Earth's magnetic field. Up to the pre- /75
sent, such problems had been solved by Wait [23,4] for two strong
limitations: (a) in the case of applicability of the quasi-longi-
tudinal approximation; (b)) in the case ¢f glancing angles of in-
cidence of the wave at the beundary of the division "air-ionosphere”.
The method we used eliminates these limitations and permits a con-

trol of the accuracy in all the computational stages.

The results of the calculation of the first eigen-value of
(1.8a) for frequency f = ke¢/2m = 4 KHz and k(ry-r;) = 5.38165 are
given in Table 3. The coefficients of reflection of electromag-
netic waves from the "diurnal" ionosphere, which is non-uniform
in altitude, were calculated according to the program of N.S.
Gavrilova [5], with and without a consideration of the Earth's
magnetic field, and are given in Table 4. The coefficients Ry
and Ry were tabulated according to the following formulas:

_ 0t () - 2—‘;—1— i, |
Ry= —| ——T

I HO (x) + 57+ i8] ek
N It ) () -+ —21; + —51-—
Ry=— 1 i

| IWHO )+ g+ 5]

for &1 = (0.1530809 - i0.2122646)-10"2,

We would like to take advantage of this opportunity to express
our appreciation to G.I. Makarov and V.V. Novikov for formulating
the problem, to G.I. Makarov for discussions which determined the
final variation of the article, to B.A. Samokish for valuable con-
sultation on the incorrect problems of mathematical physics, and
to N.3. Gavrilova for the program of the calculation of coeffi-
cients of reflection from a non-uniform and isotropic ionosphere.
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A SOLUTION TO A WAVE EQUATION IN A SPHERICAL SYSTEM OF
COORDINATES

V.N. Krasil'nikov

ABSTRACT: The author shows why the method of
separation of variables which is often used in
solving diffraction problems in a spherical
system of coordinates needs modifications in
certain particular cases. The requisite mod-
ifications are presented, and examples are
cited.

The scheme of solving diffraction problems in a spherical /77
system of coordinates by the method of separation of wvariables is
well known [1]. Essentially, a wave field is subjected to spec-
tral analysis according to time . However, there can be situa-
tions where an assumption that the field sources are monochromatic
does not simplify the solution to the problem. For an example,
we could mention the diffraction of waves on a sphere with radius
changing in time - a description of this phenomenon with the aid
of ordinary expansions into spherical and temporal harmonics is
extremely inconvenient. The standard scheme of the method of
separation of variables needs (in this case) some modification.
This study discusses the latter in detail.

Section 1. Principal Relationships
Let us consider a scalar field u (;, t) which satisfies the

following uniform wave equation:

Ve om =0 (1)

where ¢ is the velocity of wave _ »jpagation, assumed to be constant.
In a2 spherical system of coordinates (r, 8, ¢), it is natural to
represent the field in the form of a series by spherical angular
functions Y, (6, ¢), i.e.,

u(r, 6, ¢, )= S u,(r, HY,0, 7). (2)

n=0

Since Yp(6, ¢) form a complete and orthogonal system of functions,
and each of these satisfies the equatic

viY,+nn-4+1)Y,=0,




where V% is the angular par’ Jf the Laplace operator [1l], the
coefficients of the series in (.) obey the following equation:

A/,u ';l(,l(l", f)} :O) ( 3 )

where the symbol below was Introduced for the sake of brevity:

The assumption usually made about the monochromatism o. the
process reduces (3) to an equation for spherical Bessel fur~:ions.
However, it is more convenient for our purposes “to use some aux-
iliary differential operator Ly which satisfies the commutative
relationship

ML,=L,0O, (u)

where [ is a uniform wave operator Ffor the coordinate r, i.e.,

If there is such an operator L,, then, by the substitution
uﬁ:Ln {'Un}

we will reduce the problem of integration of (3) to that of solving
a uniform wave equation, i.e.,

D'vn=fm (5)

where f,; is the general solution to the uniform egquation

L, {fn}—'——o-




It is found that the operator L, is not very complex and, what
is particularly important, it acts only in respect to the coordln-
ate rj; as a result, the auxiliary equations of the type in (5a)
which arise are ordinary differential equations.

Section 2. The Operator L, and its Properties
First of all, we will assume that the differential operator

which has the Fform of

n gt 1
Ln—_—l’ (I‘dr)"-—’:—' (5)

actually satisfies the requirement in (4). This can be done con-
veniently with the method of mathematical induction. Since the
equation below holds for any function F,

0 L2 0 L P _1(eF 1 oF
or? r or 2 6!3}_1'—"——7'—{67_7;7'012}
the validity of the commutative relationship in (&) for n = 0 is

obvious; the existence of identity for an arbitrary n is required
for its fulfillment,

. 0nt2 n+1 F an { 1 o%F
re — = — =
{ (rar)n+2 + | 2” + 3) {r Or)n-H } r (rar)ﬂ r or3 } " ( 7 )
This is easy to see if we recall the clear form of the operator /79
Mp in (3a). Let (7) be valid for some n; then, using the operator

A'(;%;) on it and carrying out termwise differentiation of the
first term in the left-hand part, we find that

g+l { 1 aor}

F e e . . ———
_r— (r()r)" +1 r or2})?

,,H+( n—+5) —— (7a)

{r (ror) (r a )"+’ }

i.e., the same identity as (7), but written in a different way
for the superscript n + 1. It turns out that the operator of
(8) has the property we want.
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It is obvious that the operator L, is not unique. The_commu-
tative relationship in (4) will also hold for the operator Lp = LK,
where K is any operator commutating with the wave one, i.e., satis-
fying the following condition:

KO=0K.

However, we will use the simplest form of the operator in (6) in
the future.

The operator L, is a linear n-th-order differential operator.
It is sometimes useful to have an explicit expression for it which
includes derivatives for r (and not for r2/2). The following
formula is proven without difficulty by the method of mathematical
induction:

"
Ln=2 (n4-k)  (—1F | ok _ (8)
h=0

R — R gk htT “gpn=k

Section 3. Expansion of the Field into Non-Stationary
Spherical Waves

In order to find the auxiliary functions vp(r, t), we must
solve the non-uniform wave equation in (5); the function in its
right-hand part is found from the condition in (S5a). If we take
the operator Lp in the form in (6), then it becomes obvious that

n=1

fn(r’ t)='§)'ck(t)r2k+1v (9)
where Cjy(t) are arbitrary time functions. However, logical consid-
erations show what has been derived, what has been introduced into
the solution to the problem by the functions in (9), what was due

to the artificial mathematical method - introduction of the operator
Lp - and what should not affect the ultimate form of the solution.
Let us prove this.

The auxiliary functions vp, as the solutions to (5), have th
following form:

—~1

TV, ==

=071 1o
where [~! is the inverse operator of the wave one. It follows from /80
the commutation relationship in (4) that

L,=M,"L,0 (11)
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(M-! is also an inverse operator). Let us turn to the functions
u ?P, t) introduced directly into the solution of the wave problems,

ll,,:L,,{’U”}. (12)

A consideration of (10) and (11) gives the following:

un:M;an {fn}v (lQa)

However, in view of (5a) Lp {fn} = 0 and, consequently, the functions
up do not depend on the selection of fp. Therefore, limiting our-
selves solely to an investigation of the uniform equation in (5), we
will take its general solution in a d'Alambertian form, i.e.,

Vu(r, 8 == 0, (¢~ ), (4 ), (13)

where ¢, and ¥p are arbitrary functions of its arguments. Expansion
by spherical functions of (2) then acquires the following form:

~o

u(r, 9, ¢, t)=2[,,,{(bn(t——cr—)+‘13'u (t—}—%)})’,,(e, ?). (14)

n =

Formula (1l4) represents the general solution to the three-di-
mensional uniform wave equation in (1). A single term in the series
of (14) can be called a non-stationary spherical wave; naturally,
it is a particular solution to (1).

The expansion by stationary spherical waves is well known [1]
for monochromatic (e~ iwt) fields:

a(r, 8, 9, )=t 3 (AN (kr)+ B1D (k) ¥, 6, ),
n=0

(1s)
where hél)(kr) are spherical Bessel functions; k = %, while Ap and
Bp are arbitrary constants. It is obvious that this expansion is a

particular case of our fornula in (14%), If we assume that

r —iw (""‘:‘)
( __c- ( k)n+l PR TS 1]

+IV\=8B E__ p—twt—itr
n [ (__ k)n+l ’
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we recall the explicity form of the operator L, in (6), and we con-
sider that the spherical Bessel functions have representations [1]
such as

) oy g (__1yntin 0" (€7

W @ =12 2o (Z),
—lz

K @ =i(-1y2" (),

(z02)*\ =

then it is easy to see that the expansion of (1l4) converts precisely /§
into (15).

One more comment which should be made touches on the behavior
of the solution to (14) in the neighborhood of the origin of the
coordinates. The operator Lp includes the inverse power of r and,
therefore, even acting on the analytical function, it yields a re-
sult which generally becomes infinity at the origin of the coordi-
nates. If the latter cannot be eliminated from the region where
-expansion of (14) has force, then it is necessary to impose a special
condition on the functions ¢p and ¥n. In order to explain this
property, we should mention that the effect of the operator Lp on
some function F(r) can be represented in the following form, consid-

ering (6):
Ly{F)==omn_ 9" F(n)
@rnHr  r
If E%El is an even and limited function of the coordinate r, then

Lp{F} does not go to infinity for » = 0 (since is expanded into

a series by non-negative powers of r?). The function F(r) itself
should be limited and odd. As regards the expansion of (1l4), this
means that the wave field which is finite at the origin of the co-
ordinates can be represented in the following form:

oo

u(r 0.9, t)'=21‘" {(D" (t - —:—) —®n (t + _:—)} Va®, o), (16)
n==0

where each member of the series contains only one arbitrary function
¢én, which is assumed to be limited.

Section 4., Expansion Theorem for a Plane Wave
Let there by a plane wave which is propagated in space in a

direction coinciding with the polar axis of the spherical system of
coordinates, and for which
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]
ur, 8, t):f(t—’—‘igi), (17)
where f(t - E—S%i—g) is some arbitrary (for example, piece-wise con-
tinuous) function. The independence of the field from the coordinate

¢ allows that the expansion of (16) be written in the form of a
series by Legendre polynominals Ppj(cos 6).

rcos @
f(t_ P )= E:un(r9 t)Pn(COSe). (18)
n=0
The convergence of such an expansion is guaranteed by the corres- 82

ponding theorems in the theory of .spherical functions of [2], and
the coefficients up(r, t) are determined by the integrals

+1
2n41 .
ty (r, ) =2 [ f(e - F) Pax)as. (19)

|
Here x = cos8. For Legendre polynomials, the following Rodrigues
formula is valid:

— 1 d" 2
Pax) = T2 — 1y,

This shows that, 1f we carry out multiple integration by parts in
(19), then, considering that

oQIH-I
S (L —x)" =0,

we will reduce the integral of (19) to the sum of the (n+l)-th in-
tegrated term. The result of this operation has the following form:

” =
u, (r, t):.z_ni ‘S-‘ (__ l)hD-;(k+l)-f(t ___2".) D;+k (x’— l)nx +1
4

M2t d ,
= J (20)
where the symbolic operator Dx = 5% was used. According to the
Leibniz formula of [11],
n+k
D;-l'k(x: . 1)n= z C;+kD:+h-—S(x . l)nD:'g(X"I—I)n.
§=0
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However, D:+]<—S(><—l)n = 0 at x = 1 for all s, except s = k; and

Dz(x—l)n = n! Similarly, D}S{(x-i-l)n = 0 at x = -1 for all s, except

= nl This means that

s = ny; in the latter case, Di(x-}-l)n

DI (52— 1)),y = Chantn (= 1) .. (= k12"

Dyt — 1), =Crnin(n—1) ...
s (=R TR (1) 1

It is convenient to express the cofactors D;(kﬂ‘)f(t - £X)

with the aid of the symbolic operator for differentiation by time

D = In this regard, it iIs obvious that

%Q}

‘ T
D;(k+1)f(t_£{_)=(;;f;_) D“"‘“’f(t—-%‘f-),

c

and the series of (20) is rewritten thus: 83
-1 N (n—1) ... (a—k+1)
20 - Q k nn—1)...(n—
w,(r, 1) = 5— Z( ~ 1Y°Chsr ok AT X
f=0
n
X (— c)h-HD—(m-l)f(\t__g_)___Qn;r 12(_ 1 C i X
%=0
nin—1)...(n—k+4+1) k+1 y—(k+1) r
X M By ) (— M D f(t—{—.—c—).
Let us now consider the possibility of the followi .g identity
conversiocn:
D plp o ) peanpfp 4 1)
e+ o) =55 e+ )=
k"R (n41) r
=(xo)f WD Ul ),
. . . n _ (n+k)!
and, using the formula for the number of combinations Cn+k = iR

we find this representation Ffor the coefficients un(r, t):
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u,(r, t)_Qn-{- (— 1)"+igntt (n 4 &) (=1 o

R(n—E)] ~~ gk k41

R=0
_ 41 n \ o
%4 > n—nD (n+1)f( )_{_ n2 (—1) +1 4 —E(T’:Tz-t—‘lk)—t'x (21)
*=0
(____ I)k on-—k —(a+1)
X e g D7 (14 )

If we now recall the explicit trorm or the operator L, [Formula (8)]
from Section 2, then the expression in (21) is simplified in this
way:

u, (r, t):(n,{_,%)( 1)+ e {D“"“)f( %)“
_D'—(n+l)f(t+ __:_)} ,

and the expansion theorem for the plane wave in terms of nonstation-
ary spherical harmonics acgquires the ultimate form of

f(t--%):}::o(n "}";—)(—C)"“LnD_("“){f(t——:—)_.

— f(t + —%—)} P, (cosH),

(22)

where the operator D—(n+l) signifies integration of (n+l)-th multi-

plicity in time t.

We could raise the question of the arbitrary constants which /84

arise when this type of integration is carried out. It is rather
obvious that their selection should not affect our Ffinal results;
-(n+1)

the operator D arose in the process of integration by parts
of (19). However, it is well known that the result of this opera-
tion does not depend on the specific selection of the antideriva-
tives. We can arrive at such a conclusion precisely by analyzing

(22) directly. The functions D_(n+1)f(ti L) differ from each other
by polynomials of degree n with arbitrary coefficients Ay, so that
the difference

D+ {f(t_—c'—) —f(t“*" %>}

has the following form in the general case:

Snfe£P- Sl 1]
h=0

k~0
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i.e., is a polynomial by r of degree no higher than n, and includes
only odd powers of r. Because of the properties of the operator

L, already discussed at the end of Section 3, this difference van-
ishes and the coefficients in the expansion of (22) do not depend
on the selection of the constant Aj.

Section 5. Field of Concentrated Source

In the preceding sections we considered solutions to a uni-
form wave equation in (1), but it is also of interest to apply the
apparatus developed to a calculation of wave fields which have
sources. Let a concentrated emitter whose effect is described
by an arbitrary time function f(t) be propagated at the point

P o= ?0. The field g(%,t) produced by it in free space 1is a par-
tial solution to the equation

4 > >
Vg — T8 = —axf ()8 (r —ro), (23)
which disappears as f(t) tends toward zero. It is well known [3]
that
R
f("'T) (2u)

o7

. ->
where R is the distance between the observation site r and the

point Py. However, we are interested in the expansion of the func-
tion In (24) into a series by non-stationary spherical waves. Con-
sidering the source to be ordered on the polar axis of the spher-

. v . . =
ical system of coordinates - %3 (rp, 0, 0), ~ we can find g(r,t)
in the form of

g (7, t) Y gt 7o, £) P, (cos9). (25)

n==0

Using (23) and the fact of orthogonality of the Legendre polynom-
ials, it is easy to show that the functions g, are solutions to
the equations

M'l{gn} = -(2/1-{—])%(-:16(;-__,-0),

36

/85




where the differential operator M, is determined by (3a). We will
use the ordinary substitution g, = Lp {Va} and the principal
property of the operator Lp in (4); the auxiliary functions vp(r,t)
then satisfy the non-uniform one-dimensional wave equation

van"—(Qn—i—l)f(t)L;l{tz(_r;A}’ o

where L' is an inverse operator whose explicit form is given in
the Appendix. After considering this, (26) is written thus:

d?y, 1 o -
o e e~ f M,
2 — p2y? (268a)
Pog 1 Py ——(2’1+1)f(f)"2nL_7((7_—1)—;:)%—f, r<r,
or? e ‘o Y
0 r>rg,

i.e,, for the auxiliary function v the sources are distributed
in the interval (0 - rg). The following expression is a particu-
lar solution to the equations in (26a) [1] [¢ (t), below, is the
antiderivative for f£(t)]:

(2n+1'>05 (“‘ "r"rl (t——'_" )dx, r>ro,

,3+12n — )

e, =t 5 LA (e art

l ’.n+l2n n— l)!

(27)

+S 3:1 o+ Fex |, r<ro
Fd)(t—f—:—r"), r>ry,

d:(t+£‘7'-9-), r<r,.

vo(r, &) =

2"0

However, the solution of (27) does not guarantee finiteness of the /
field at the origin of the coordinates. Therefore, v/ (r,t) must

be supplemented by a solution to the uniform equation v"(r t) in

such a way that their cowrbination

v (r, )y =a(r, £)-+vn(r, )

is an odd function of r. Considering Section 3, this causes finite-
ness of the field at r = 0. Let us show that vH(r,t) should be




taken in the form of

. mttye ¢ (2—r3)""
v, (r, £)=— (211-’;”_)10 S‘x(x(n:(;))[ Q[t*i’%"@“]dx (28)

[The wave of (28) can be interpreted as produced by auxiliary
sources obtained by mirror reflection of real ones relative to
the point » = 0].

The complete solution for r < vy can be written in the fol-
lowing form:

LB I Gt 1 r=x\ .
o, (r, t) =22 {Sx 0 cp(t+ . )dx

P (n—11

S (x2 ro) (t r-{-x)d o

BCE

+f ol 2o
_{ (x—r’)"‘ (64755 ]

x.__—____

g m—n1
It is obvious that the first two integrals give the odd Ffunction
of r in the sum; this is easily demonstrated for the last two by
replacing the variablé of integration x by -x.

The ultimate form of expansion of a field of a point source
into a series by spherical waves is found as such:

g(r, t)=c 2’":?_2}' f (xz = lL"[(D("‘“r—cx)_
__tb(t__ ri—x}]dxp,,(cc)se)-}-z—m[ (t~—f——c'~'2)—-®(t—ﬂc'—’.2)]

for r>r,,

grt)=c (2"“){0 Gl Ln[w(t+57—x)“

ot rhtliogn (n- 1)
~ofe—r b act o R ol - 252

m(r ' c‘)] dx ‘, P, (cos 0)+§;;{¢>(t +’—-‘;—’°)—

(29

0(t - .;_r.-z)} for r<ry
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Let us recall that the function ¢ (t) = ‘ff(t)dt; a selection of
the integration constant, as follows from the form of the formulas
in (29), is not essential; this constant 1is preserved,

We should mention that the assumption we made about the posi-
tion of the emitter on the polar axis is not a fundamental limita-
tion: we can write the relationships in (29) for an arbitrarily
arranged source by simple use of the theorem of addition for
Legendre polynomials [1].

APPENDIX
Operator Inverse to Ly

Together with the effect of the principal operator

g \n 1
""=rn(rdr) 7 (1)

it is som.times necessary to consider the results of applying the
inverse operator Lﬁl. If the operation

g=Ln({} (IT)

is an unambiguous differential transition from the function ¥ to
the function ¢, then the converse effect

v=17"(n (I11)

is essentially reduced to integration of a differential equation
of n-th order, and its result is determined with accuracy up to

the solution xpn of the uniform-equation Lp {xn} = 0. It fol-

lows directly from the explicit form of Lp that

n
ta= 3, Cartt™, (1V)
k=1

where C} are arbitrary constants, the definitions of which can be
drawn from various conditions.

Considering (I), we will again write out (III) as the fol-
lowing:

r Tn I

qa=r§rdr 'r,,_dr_...j‘ ?_a .
a nj 19rn_y FE 1+ xa(r) (V)
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The presence of an arbitrary function in (IV) allows us to consider

the integrals in (V) as non-definite. A substitution of the varia-
bles 23 = x reduces (V) to n-multiple integration of the function
o ( V x)/xn/2, Using the well-known formula which reduces the

iterative integral to the single one [1], and again turning to the
variable r, we can write the following:

r

—_r (r2 —s3)"-1  o(s)
v= 271 S (n—DN1 s s+ An (7). (V1)

where the lower limit in the integral and the coefficients of the
polynomial xn(r)are arbitrary, as before.

~
x©
o]

In Section 5, we had to use the operator Lj! in a specific
problem concerning expansion into series by spherical waves of
the field of a point emitter. 1In this regard, the emitter, which
was connected not infinitely long ago, cannot produce fields at
arbitrarily great distances from itself. This physical condition
permits us to define the operator L;l unambiguously. The zero
conditions at great distances are guaranteed if we assume that
xn{r) = 0 and a = @ in (VI). Therefore, L;! meant the following
operation in Section 5:

|

r

=ty | LIPSO | 9(s) VIT
Ll =g ) o e 4 ( )
and Lal { ¢} = r¢.
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DIFFRACTION OF A PLANE ELECTROMAGNETIC WAVE ON AN IMPEDANCE
SPHERE WITH RADIUS CHANGING IN TIME

V. N. Krasil'nikov

ABSTRACT: The diffraction of a plane electro-
magnetic wave on an impedance sphere with ra-
dius changing in time is analyzed mathemati-
cally. Even the simplest examples presented
clearly show the uniqueness of the process of
wave diffraction on bodies of variable size.
The Debye potentials corresponding to an inci-
dent linearly-polarized plane electromagnetic
wave are defined.

Section 1. Formulation of the Problem /89
Let there by a spherical body which changes its radius in
time t according to a certain law a(t) in an inorganic uniform non-
conducting isotropic medium with electrodynamic characteristics of
€ = p = 1. Moreover, let a linearly-polarized plane electromagne-
tic wave be propagated at a velocity of ¢ In the direction of the
axis 0Z of the Cartesian system of coordinates, i.e.,

-

E‘a=f(t—-—§—);r, ﬁo=f<t—%)ey, (1)

where f(t - 2) is a known function describing the shape of the
wave, while 8i are the unit vectors of the system of coordinates
(we will also use the spherical system of coordinates », 8, ¢, the
polar axis of which coincides with the axis 0Z, while the center
is located at the center of the pulsing sphere).

At the surface of the spherical body which causes the diffrac-
tion of the incident wave of (1), we will impose an impedance
boundary condition on the tangential components of the field vec-
tors, i.e.,

Et == W ng >< —’;] l’____a(l) -,;«= - er' ( Qa)

Here w is the surface impedance determined according to the physi-
cal properties of the body; its magnitude can change in time, but
should not depend on the angular coordinates 6 and ¢. From the
electrodynamic point of view, the surface of the body is uniform
and isotropic.

The condition of (2a) requires some physical remarks. We
should differentiate between the motion of the boundary (surface
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at which the properties of the medium change irregularly) and the

motion of the substance itself. TFor example, a unique ionization
wave can be propagated along the substance by the effect of a pulsed
source of hard radiation. In this case, the free electrons aris- /90

ing as a result of the photoelectric effect, which basically deter-
mine the electrodynamic properties of the medium, do not have a
mean directed velocity. On the contrary, in the motion of a

metal conductor its electrons have a certain directed velocity .
and, from the point of view of the immobile observer, are subjected
to the effect of Lorentz forces, of which thevre are none in the

first case. The difference between the motion of the substance
and the motion of its state is partly reminiscent of the relation-
ship which exists between group and phase velocities. In quanti-

tative terms, this difference amounts to the fact that the usual
electrodynamic characteristics of the medium (including the sur-
face impedance) can be used directly only in that reading system
relative to which the substance (or, more precisely, its current
carriers) is at rest. A conversion of the relationships of inter-
est to us into another system of coordinates can be carried out

by using the Lorentz transformation for the field.

Let us consider such a small part of the surface that it can-
not be considered plane; let the rate of movement of the boundary
be directed along the normal n, and at a given moment of time be
equal to V, while the velocity of the substance moving behind it
is equal to U in respect to our "immobile" reading system K. In
a system of coordinates K' which moves together with the substance,
the condition at the boundary S acquires the following form:

Ei=w,[H.x 7], (2b)

where E' and E' are the electromagnetic fields in the system K',
while wy is the ordinary value of the surface impedance. Using
the law Ffor the conversion of fields in [1], we will write out
(2b) in the following way:

’

S

2

ﬂQ

(7 3 ) = o et L[ 7] <))

where E and E are the electromagnetic fields in our reading system.
The latter relationship converts into the boundary condition

of (2a) if we use the value of the surface impedance w according
to the formula

Uwofc (3)
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which defines the rule for conversion of the surface impedance in-
to the "immobile" system of coordinates. TFormula (3) includes the
directed velocity of the current carriers U, and not the rate of
displacement of the bouadary V.

The surface impedance is often a function of the frequency
(for example, in considering the skin effect), and in this case
is usually complex. A direct application of these values of wg in
our problem is inadmissible, since the wave diffraction is of a /91
parametric nature and the spectrum of the field is converted in
this regard. However, 1f we can disregard the dispersion of sur-
face impedance in the frequency band arising in the diffraction
process (this 1s realized for slow movements and a sinusoidal inci-
dent wave), then in constructing the model we can use the value
of wg at some mean frequency. The fact that, despite its para-
metric aspect, the problem remains linear, allows us to describe
the dependence of the fields on time with a symbolic factor exp
{-iwt}, and *to use the complex surface impedance derived from it.

In concluding this section, we should note that, since the
theorem of singularity of the solution to the electrodynamic
boundary problem alsoc holds in our case [2], the sought-for dif-
fracted field should sa=isfy (1) either the zero initial condi-
tions, if the wave of (1) is of a non-stationary nature, l.e.,
f(x) = 0 at x < xg9, where xg is some integer, or (2) the condi-
tions for infinite emission, if the incident field of (1) is a
periodic function of the time.

Section 2. Construction of the Formal Solution.

It is convenient to describe both the incidence (1) and the
diffracted field (E, H) in correspondence with the principlg of
polarization duality, wZth the electric (H ) and magnetic (Hh)
Hertz vectors having only one radial component in the spherical
system of coordinates. The Maxwellian equations in the space
outside the sphere are equivalent to

grad div Hz—rotrotﬂg———-————o i=e, A, (%)

while the fields E and E are determined according to the Hertsz
vectors by the following:

r-S i > > 1 9 =4 5
E= rotrotII —T-——rotH,,. H=rotrotHh+T-E—rotH9. €s)

Let us introduce the traditional Debye potentials u and v,
which are connected with the Hertz vectors in the following way:

> - >
I, = rue,, I, = roe,. (8)
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It is well known [3] that ordinary wave equations are obtained
from (4) for the functions of u and v, i.e.,

v = am){o) =© (7)

N——

It is natural to look for the potentials u and v for the dif~ /92
fracted field in the following way, considering the results of our
study in [4]:

- mw
ulr, 1} - L u,{(r, 1y Py’ (cos8)cos 9,

n--1 (8)
zv(;", t) = E’Un (r, t) PP (cos9)sin g,
nei

where

A s A s ]

i = n ——— =. y s
while the operator L, r( rsr) - The corresponding expansions

for the incident wave are found in the Appendix (TFormulas IV and
V).

A selection of the arguments for the still-unknown functions
¢, and ¥p corresponds to the fulfillment of the zero initial condi-
tions in the non-stationary problem, and it guarantees satisfac-
tion of the principle of emission in the stationary case. The
potentials in (8) satisfy the equations in (7) derived from the
principal Maxwellian rules.

The components of the vectors of the diffracted field in
the space outside the sphere -~ r > a(t) - are determined by the
following group of formulas, based on (5), (6) and (8):

E=Y (?; 1 .92_> (ru,) P (cos 8) cos @,

n=1

= 0
Ey= L __:_._;; (run)5g P.(cos ) cos ¢ 4

el

= (1)
1 P (cos )
+ X (@) g o5 #, (9)

n=1

ad (1)

1 J P (cos B)
Eym— Y, 5 (rity) —"ig—sine —
n=1
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P (cosB) sin 7,

i (dr’ - ’,T 9 )(rv,,) py (cos ) sine

it {
I L T air) ey
e = AT ("’) of “Sln‘0+
LN g P (cos )
+ TL o7 (en) sin B sin %,
n—i
\ ‘19 Pi,”(cos )
Ho= )} — = (rv,) —g5——cos e+
n -1
1 a ((
b Y () 5 09 P (cos 9) cos 7.
n-=1
. £ » . - - = _>
Similar relationships also occur for the inecident wave (Eg, Hp). /

In order to find the unknown functions, we should use the
boundary conditions on the surface of a sphere of variable radius.
It follows from (2a) that

(Est+E)y = —w(Ho+H),, (Ey+E), = w(H,+ H),

at  r=a(t).

(10)

Having compared (9) and (10), it is easy to see that the boundary
conditions are fulfilled if

(11)

1 9 , w 4 ,°
~ gy r{tta, 1)) — T'_JT("('"+"") =0
19

r or

g |
r [r‘.'Ucm _f' vn)l T E.?"W(U()n“’"vn) :O)




3, ... at r = a(t).

The existence of separate conditions for the first and second
Debye potential shows that, in the case under investigation, the
effect of the boundary does not result in a connection between
fields of the types TE and TM.

In an explicit form, the equations used for finding ¢, and
¥n are such:

{L,.+1+"—“,L—‘L,,—-% »%—L,,}(I),,(t —+)=
= {L,,+1+"4;1L,, -—%Ln} (n+-;—) (—c)™HiD~ D 5

n(n+1)

)*f(f+-i—)}’

Ty
L,,, -~ )

- '> N
7 o L ‘"}( (— Y= nen

nn+1)

X))

1, 2, 3, ... at r = a(t).

The boundary conditions are reduced to an infinite set of
ordinary linear differential equations with variable coefficients.
This proves that the comments we made earlier about the linear
and parametric nature of our problem are correct. Each of the
equations has order of (n+l) and is uniform: 1if we find those
particular solutions for ¢, and ¥, which vanish as f(t-r/c) tends
toward zero, then the diffraction problem is formally solved.

We should mention the order of
inversion with the relationships in
(12). At first, we must perform all
the operations of integration and
differentiation by t and r, consider-
ing that the functions ¢, ¥y and £

depend on the combinations t - g-or

t + =
C

As a result, the derivatives of
these functions are introduced into
(12) by their complete arguments.




Then these arguments must be considered (at the boundary surface)
as equal to t - ééil-= g (t) and t + E%El-= n (t). The powers v

introduced to the coefficients in front of the derivatives are
replaced by the power a(t).

A solution to the differential equation thus obtained defines
the functions ¢x(&) and ¥p{&) only on the surface of the sphere
r = a(t). In order to obtain the diffracted Field in space, we
must extend ¢, and ¥, into the region r > a(t), using the pro-
pagation of these functions by characteristics of the uniform
wave equation. In this case, we must distinguish between the
"start'" time ty of a certain wave phase with surface r = a(t) and
the time t it is observed at a certain point at a distance of r.
The equation for the characteristic is

t___;_zta_?@' (13)

and, obviously, the furctions on the characteristic satisfy the /95
following condition:

q)n<t__c’..) = ‘I’n(fa _M%:))’ \‘-n(t’_ _:__) = \p’n(ta _a(cfa)) C (1)

An extension of the wave field into space by characteristics,
as illustrated in Figure 1, is impossible if the velocity of the

boundary %%. exceeds c. In this case, the boundary advances the

wave reflected by it, the diffracted field does not arise, and the
energy of the incident wave undergoes transformation into other
types of energy connected with the specific physical mechanism for
displacement of the boundary.

o

Section 3. Long-Wave Approximation.

A precise solution to .ne equations in (12) can hardly be
shown for any arbitrary law of the motion of the boundary. It is
true that, in the case of uniform expansion (or compression), the
expressions in (12) can be reduced to non-uniform Euler equations,
but the functions ¢ and ¥n thus found would have too complex a
representation, preventing us from obtaining physical results.
Therefore, an approximating analytical study of the equations in
(12) is more intelligent for a number of particular situations.
In this work, we will discuss the case of "long-wave approxima-
tion", when the relative changes of the function f(t) determining
the time dependence of the incident field are small for a time
on the order of ag/c, where ag is the maximum value of the radius
of the sphere at the stage of the process under investigation.
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Since the incident wave is generally not sinusoidal, then, instead
of the ordinary inequality A >> ag, we will require that the func-
tion £(t) has N continuous derivatives which satisfy the follow-
ing inequalities:

2 dkfz
—;) <<(;;,;;) ’ (15)

where kK = 0, 1, ..., N - 1. The line signifies averaging over the
interval of time between two neighboring zeros of the averaged
function. Let us emphasize that the criterion of (15) relates
only to the incident field; since we will not impose any limita-
tions on the velocity of the boundary, and the values on the or-
der of ¢ are admissible, the result could be that the secondary,
diffracted field does not satisfy the requirement of (15).
a

The existence of the inequality in (15) shows that f(t + c)
can be expanded around the point a = 0 into a Taylor series with
a remainder term of number N, and this series is a good mean des-

. . . - a . . .
cription of the function f{t * E)’ even with some of its first

terms. Using this idea, weé can ébtain the following for the
coefficients ug (r, t) and vop(r, t) at r < ag:

&l
CFT DIk —mt <

Rept

>2h ”D'zlz~"_1 {f(D).

Formula (16) was written on the assumption that N = e, TFor finite
N, the form of the record changes somewhat, ags we must use the
Taylor series with remainder term for flt X % . However, it can
be seen from (16) that not only a retention of many terms in the
series for ugyy(or von), but also a consideration of uy, with
higher numbers n are comnnected with a regard for terms of higher
order in the sense of the inequality in (15). Tor example,

of r2

’
Ugy = Voy SZf(E) 5= Uy = Upp =2 T 9F T8

It is obvious [see (11)] that the relationships between ug,{(vgy)
in order of magnitude determine the relationships between up (vp).
If after integrating the principal part of the process we limit
ourselves solely to the leading terms, then it suffices for us to




solve (12) only at n = 1:

“+wc%+“+“m- =0 k().

v | (17)
) (1) H=—rO+m % (2).

In these equations, a = a(t) is the radius of the sphere, while
the derivatives of the functions ¢; and ¥; are taken bv complete
argument equal to t - gézlu The second terms in the right-hand
part can be substantial for extreme impedance values (w +~ 0 or

W o> o),

The functions of &; and ¥; found from (17) determin. the
principal part of the diffracted field, for a clear representation
of which we must use the general formulas in (9). However, for
physical interpretations it is simpler to consider that the secon-
dary field (in the apprcximation assumed) consists of a field of
an electric dipole at the center of the sphere, oriented in the
direction of the axis 0X, with moment equal to %;(t), as well as
the field of a magnetic dipole with moment ¥;(t), directed along
the axis O0OY. The proof for this is very elementary, and we will
not stop to discuss it.

The problem we studied earlier in [5], concerning the pulsa- /97
tion of an ideally conducting (wg = 0) sphere in a constant uni-
form field 1s a particular case for the equations in (17). It is
only necessary that, having considered the static uniform field
as a superposition of two plane counterwaves, £{t) = Ey in the
first equation, while £f(t) = Hg In the second, where Eg and Hp
are the magnitudes of the intensities of the constant fields.

Let us first examine movements of the sphere which are slow
when compared to the speed of light (non-relativistic case). The
function a(t) will then change slowly in the sense of (15). Nat-
urally, a similar requirement can also be imposed on the impedance
w(t), as its dependence on the time is generally connected with
the velocity of the boundary. We will disregard the small deriva-
tives of the time (in this case the difference between differentia-
tion by t and t - Eézl disappears), and then the eqguations in

(17) are simplified:

1 af
S R= O+
e e (18)
o L2 a3 1 of
Gt =R Oty o}
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Here we have introduced the characteristic relaxation times:

wa . . a
Tg = E—-for the electric dipole moment, and TH = Ew-for the mag-

netic one. They depend largely on the electromagnetic properties
of the material of the sphere, and are not constant in time. For
example, the solution to the first of the equations in (18) which
satisfies the initial zero conditions has the following form:

t t—~x

it )=f g st ) e o
0

In this case, when the characteristic time of the process f(t)

greatly exceeds tTe, integration with %—-exp {— t;x } can be re-
e e
placed by multiplication by unity.

Let us discuss the case of w = 0 in more detail. It corres-
ponds to the arisal of infinitely great conductivity in the sys-
tem of coordinates which we agreed to call immobile. In this re-
gard, 1o = 0, Ty = « and

@, (t— ﬁ—ﬁﬂ)—_fz_—a”f(t),

¢ (20)
a()\ . (2w
W, (t'—“‘ ¢ )=§ 2 ax dx.

The magnetic moment applied on the sphere decreases in a transfer /98

toward slower fields §§-+ 0}. It is not induced at all in the
constant field. In other words, the constant magnetic field pene-

trates without hindrance inside the "arising" conductor. The
formulas in (20) yield the functions ¢ and ¥3 only on the surface
of the sphere; +they are extended in space by the characteristics
of (13), and the field at great distances from the sphere (in

the zone of the emission) is determined by the second derivative
of the dipole moment with accuracy up to the well-known geometric
and polarization factors. Since

[E.],=[F.], ~ @f" +6a%ay’ + 6a(ayf 4-3a%af),

(B = (o, ~ (5-r7+ Satar), i 5=0, 6. (2

The spectral composition of the scattered field changes when
compared to the incident ome. The transformation of the spectrum
is particularly substantial if the process in the incident wave
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is slow when compared to the process of expansion of the sphere,
i.e., if %% a << f %%. In this case, the spectrum of the scat-
tered field is determined basically, not by the function f(t),
but by the parametric interaction between the wave and the bound-
ary. Wh=sn the opposite inequality is fulfilled, the scattered
field coincides in form (in first approximation) with the second
derivative of the incident signal. The corrections here are not
confined to formulas for the Doppler effect; thus, changes in
amplitude which are commensurate in order of magnitude, together
with phase displacements, are observed even for a monochromatic
incident field in a diffracted wave.

The other extreme value for the impedance (w = ®) corresponds
to the scarecely real case of a dielectric with a very high value
of magnetic susceptibility p >> e > 1. A constant electric field
E; would penetrate without hindrance into such a substance, and
the magnetic field would be forced completely out of its space.

In the non-relativistic situation we have examined thus far,
there is practically no difference between the motion of the sub-
stance and the motion of the state. As can be seen from (3),

W -~ wqg for g-+ 0.

Let us now turn to an analysis of the rules which hold for
velocities of the expansion of the sphere on the order of the
speed of light c¢c. TIn this case, slowness in the change of the
function f(t) does not guarantee slowness in the change of ¢ and
¥;, and integration of the equations in (17) is found to be a

very complicated problem. However, for uniform expansion (com-
pression) of the sphere, when %%-= Vo is constant, the arguments

of the functions 2; and ¥; differ from the start time t; only by
the constant factor

‘ y
xel,— Lt (1), 3=

?

In assuming invariability of w (the dependence of the impedance
on the velocity does nct presuppose its dependence on time in the
case of constancy of the latter, according to (3), the equations
in (17) are converted into Euler equations and can be rewritten
in the following way:

B2 (1 4-@) (1 — B) x2®1cx + B (1 ) (1 — B)2xDy; + D, (1 —Bf =
== Vielf () 5 5 =),

(22)

B (1 ) (1= B) T8 (1 + ) B (1 =) Wik ¥V, (1 =) =

= — Vix? (f(l_jﬁ_) ~—21—v— %XB}
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In integrating (22) for the case of a sphere expanding uniformly
from a "point", we must use the initial zero conditions. For a
more complex '"step-wise'" expansion of the sphere, when the velocity
is constant only during each of the steps in the process, the
solution for the preceding step will also give the initial condi-
tions for the subsequent step of the computations. It is also
useful to consider that the condition in (15) of the slowness in
change of the function f(t) for velocities of expansion on the
order of ¢ practically signifies constancy of £(t) over the entire
step of the process under investigation (since the time ag/c and
the time for expansion of the sphere to a size of ag are values

of one order). Considering the latter circumstance, the solution
to (22) acquires the following form:

Vo —ppe w of
®1(x)==—*“——~——————‘{f(t)*"g'“gfﬁta},
3K(?) \ (23)
Vi —gy e 2
‘Fl(x)::_ K;;(B) {f( ) w 6t Bt }
where
K. (®)=01—p) 131 +») (B +B) - (1 —B));
1
Ki® =1 =) {8(1+5)8@+D+0 -0
In the case of 1 - B << 1, there is a substantial difference
between the motion of the substance and the motion of the state.
For example, if the ideal conductor moves, then w = -B and X;(B8)
~ (1 -R)2; if infinitely great conductivity "arises" in a sub-
stance at rest, then w = 0, while K; (B) ™~ (1 -B). The arising
dipole moments (and the fields connected with them) differ by
order of magnitude of (1 -B). In movement of the conductor, there
is a relative effect of the work of the body over the field dis- /100

placed, which results in an abrupt increase in the emission fields.

For the sake of definiteness, let us examine a sphere which
expands uniformly at a velocity of Vg up to a certain radial
dimension ag which is then maintained (the solution to such a
problem is constructed by fitting two steps).+ Moreoyer, let the
external field be uniform and electrostatic (E = Eg ex); then
¥; = 0, or the magnetic moment is not induced. We will be inter-
ested in the field of emission. In calculating the fields, we

# %¥- and, as follows from (13),

(3) =1
ot | T T-¢p"

The maximum intensity in the emission zone (at a distance r from
the center) is then equal to the following in the case of a moving
conductor (for 1-B << 1):

must keep in mind that 0
9tg
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(Bl,=[A], = -5 LY=02 4 k=, (2ua)

In the case of conductivity arising in an unmoving medium, it is

["E’Jl=[ﬁ]kg_5 Vo (t—rfc)

o (=g Ay =0, ¢, (2ub) /101

Formulas (24a) and (24b) are valid only for the Ffirst stage of the
process, which corresponds at the observation site to the time in-

terval from t - % to t - % + = éi_S); both signals are linearly

increase of the first (and, consequently, the amplitude attained at
the end of the given stage) is (1-8) ! times greater.

When the sphere ceases to expand, the equaticn for the dipole
mement acquires the following form:

. s a
?3‘D1u+'¢o¢’lr+@1 = — Eqa0; 7p=ay/C.

The general sclution, i.e.,

. _ g —ad9)

= .
‘1’1( L — “T") = — E,ai 4 e %o {61 sin [—"/S(t.—‘j%a"-’c—)—+czj}

contains two arbitrary constants determined from the condition of
continuity in ¢; and adi/at at the juncture of the two steps in the

process. As a result, the form of the electromagnetic pulse in the
emission zone (1t = t - %}> %%'(1—8) is found to be equal to the fol-

lowing in the two cases we have examined (we will consider, as be-
fore, that 1-B<<l):

2], (7], e i [ 3], (252)

(25b)

-——%}, i, k=0, o,

[ 3]
é‘%

The pulse lasts a time on the order of Ty = 9% (natural oscil-
lations of the dipole type take place in the external range, in re-
spect to the ideally conducting sphere). There are no fundamental
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differences between the fields of (25a) and (25b). The energy emit-
ted by the natural damping vibrations at this stage is commensurable

with the energy reserve‘%‘E%a% of the static field in the sphere

with radius ag. In the first step,_ the energy emitted by the mov-
ing conductor is an order [(1 - B)~! times] greater than this value.
On the other hand, the conducting sphere with immobile substance
emits energy which is (1 - B) times less in its expansion. TFigure

2 shows forms of signals arising in the emission field for 8 = 0.8.
The solid curve corresponds to the case of motion of the substance,
while the dotted curve corresponds to motion of the state.

Thus, even the simplest examples clearly show the uniqueness /102
of the process of wave diffraction on bodies of variable size. It
is accompanied by the effects of transformation of the spectrum and
parametric emission.

APPENDIX

Let us define which Debye potentials upg and vy correspond to
the incident plane wave of (1). According to (5) and (6), we can
find the following for the radial component of the incident field
Eo!
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z 1 & i
\co),=sin8cos<pf<t——?)=—;5-W(ruo)-;--ar—z(ruo;. (1)

According to the theorem of expansion obtained in our study [4],

oo

f(t—%)=2f,,(r. £) Ps (cos 9), (1T)

n=0

where
fatr, ==y LD (w4 ) r (e = 5) = (e 4+ 7))
RS
Lp=r rdr) T
. -(n+1) . ... . . . .
while D signifies integration by the variable t (n+l) times.

The left-hand part of (I) can be converted in the following way with
the aid of (II):

’ z ¢ a r 8
sinﬂcoscpf(t——7)=7-cos<p-a—05‘f(t‘_ Czs )dt:-_

= — 67 E '5‘ falr, O dtPf,‘) (cos 8) cos ¢,
n=l

where we found that the following relationship holds for the Legendre
polynomials:

oP
09" =—P (cos 0).

The right-hand part of (I) can also be represented in the form

of expansion by spherical functions Pgl) (cos 8) cos ¢. Following
the general principle for solving a wave equation in the form of an
expansion by non-stationary spherical waves [4], we can write out
ug in the form of

. -
uo (7, i)=2 La {ton (r, £)} PV (sin0) cos o,

n=1




and, to find the functions ug,(r, t) we will use (I). It follows
from the orthogonality of the functions Pr(]l) (cos 8) cos ¢ that

£ 92 1 o2
- ,.jfn(r. t)dt=0_ﬂ(ru°")_'ﬁ'a—t?("uon)- (IT1)

in order to simplifty (III), we should note that (4) shows the fol-/103
lowing for rugp:

02 1 02
ors (tion) — o+ 55 (Ftten) +
1 0 a0 pa 1
L2 sin0 Z pWeos 0 e 1|
+(m°"){r2 sin 07{7 (cos 0) d"{ g5 (€08 0| = g =0

Let us also consider that Pél) (cos B) is a solution to the equation

1 0 0Pf,l) 1 -
. ] , 1) _*
P 6(sin 5 +[n(n+l) SED P 2,

As a result, (III) is reduced to the form of

. 1
~2{fu ot = Mon2na D) | (IITa)

and the Debye potential uyg (r, t) of the incident wave for (I) can
be represented in the following expansion by spherical functions:

1

< 2" (++3)
uo (7, £) = m]—)(—c)”?L“D‘("H) {f(t __Z‘r_)__
n=i

(IV)
-—f(t -+ {—)} PW (cos 8) cos 9.
An almost analogous formula can be obtained for vy (%, t);
- (n-l-_]_) v
Yo (_; t)== ——2 n+2y f—(n+2) r
’ a1y (—0" 7 LaD {f(t—?)_
=t (V)

—f(t §s %)} P (cos 8) sin ¢.
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DIFFRACTION OF AN ELECTROMAGNETIC FIELD ON AN UNBOUNDED
HOLLOW CYLINDER IN A CONDUCTING HALF-SPACE

0.G. Kozina and K.F. Filippov

ABSTRACT: The authors look for a field diffract-
ed on a hollow cylinder of infinite length in

the lower conducting half-space of a two-layered
medium divided by a plane boundary, which is pro-
duced by vertical or horizontal magnetic dipoles
in the lower half-space. It is found that a
vertical magnetic dipole is more sensitive to

all discontinuities than a horizontal one.

A two-layered medium divided by a plane boundary is inves- /10
tigated in this article. A hollow cylinder of infinite length is
located in the lower conducting half-space near the boundary. We
are looking for the field diffracted on the cylinder which is
produced by vertical or horizontal magnetic dipoles in the lower
half-space.

We will consider that the lower conducting half-space is

characterized by the parameters €;, w; and oj. The upper half-
space and the insides of the cylinder of radius a are character-
ized by the parameters €, and gy (oy = 0).
C‘,}Lz z=0
€1, [1,6 i(@‘lhs} {(z.02)
Field Observation
source  Hollow site
Cylinder
Fig. 1.

We will use the Cartesian system of coordinates in order that
the plane z = 0 might coincide with the plane boundary between the
media, and that the axis z might be perpendicular to the latter.
The source of the field with coordinates (0,0, hg) and the observa-
tion site (x, 0, z) are of lesser depth than their distance along
the horizontal (Fig. 1).

2L x n L x 1)
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Here hg 1s the depth of submersion of the transmitter.

The problem of the diffraction of a field on an unbounded
cylinder in a uniform medium has been investigated for a long time /
[11; the existence of a plane boundary complicates it to a great

extent. In physical terms, the existence of such a boundary re-
sults in a situation whzre a system of multiply reflected waves
arises between the c¢cylinder and the boundary. If the secondary

field due to the disturbing effect of the cylinder is small, then

Wwe can expect that the multiply "reflected" waves will be greatly
weakened, and the waves which undergo a small number of reflections,
which can be found by the method of successive approximations, will
play the most important role.

Let us apply this method to a solution of our problem, and let
us divide it into a number of steps. For the first step, we will
consider that there is no cylinder, and there is only a two-layered
medium with a field source in the form of a magnetic dipole. We
will use the results obtained in [2] for this step, but the plane
Eoundary will be replaced by fictitious sources in a uniform medium,
with parameters of the lower half-space. These sources have dif-
ferent forms for vetical and horizontal emitting dipoles.

For the second step, we will solve the problem of the diffrac-
tion of an electromagnetic field on a hollow cylinder in a uniform
conducting medium for each source separately.

For the third step, we will make the cylinder itself similar
to some source of a field, and in solving the problem of diffrac-
tion of the field produced by this source there is a field re-
flected twice from the plane. The latter can be considered as the
incident field, and we can again solve the problem of diffraction
of a field on a cylinder. When the cylinder is a certain distance
from the boundary, this process will rapidly converge, and it can
be stopped after the third step.

Let us turn to a solution of the problem formulated and con-
sider, first of all, the case when there is no cylinder, while
there is a vertical magnetic dipole in the lower conducting half-
space.

If we are interested in distances between the scurce of the
field and the observation sites which are much less than the wave-
length in the upper mecdium, i.e.,

then we can assume that k,; = 0, and we will obtain an approximative
expression for the Hertz vector. As shown in [2], this expression
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has the following form:

kR 1k,R" '
M= Mo { e " e 2 & (MR ?
z 4n R R sz om _"lﬁjo(fl) H((;” (m) --

(3)

i

03 * * *
T a WA (m)} =1 4 4 I 0,

where R = \/;2 + (z - hg )2 and R' = vf;z + (z + hg Y2 are the
distances from the prlmary and mirror sources to the observation
site; My is the magnetic dipole moment;

=4 VR = Fh®
m=rt "’1 VIR +(zF ke

Jo and Hy are Bessel functions; k% = k% €$1“m15 ko is the wave

number for wvacuum; Sél and Uy, are the complex relative permit-

tivity and relative magnetic susceptibility, respectively.

The first term in (3) describes the field of the primary
source, while the remaining terms describe the field of fictitious
sources due to the presence of a plane boundary, In this regard,

g is the Hertz vector of the mirror source, H%3 is the Hertz
2

vector of the octupole, while II,, and Iz COrrespond to the field
of two-dimensional sources producing waves which, in the future,
we will call "refraction waves". We will use the formula

H = grad div IT - k%11 (%)

and substitute (3) into (4). We will then find all the components
of the field, which we wi-1 call the components of the "direct™
field, while the field caused by the cylinder will be called the
diffracted one.

Table 1 shows approximating expressions for the "direct"
fields H, and Hy with a consideration of (1) (Hy = 0 at the se-
lected observation site for y = 0). It can be seen from the table
that, in the vicinity of the surface (hg &~ 2 ~0), the field of
the primary and mirror sources is close to.zero. This can be
explained in physical terms by the fact that the waves are in op-
posite phase and compensate for each other. When the following
condition is fulfilled,

| BR | > 1




the field of the octupole attenuates, exponentially. Under these
conditions, the compomnents H" and st make the principal con-
tribution to the field at the observation point; for these com-
ponents, there 1is no exponential attenuation with distance along
the horizontal. In order to show the mechanism for propagation
of these waves, let us turn to their phase, which has the form of

—Re k1 (hS+ 2').

A wave with such phase can be ascribed the following path (Fig. 2).
From the lower conducting medium, the wave goes to the surface,
where it is propagated without attenuation (k, = 0) up to the
Pprojection of the receiving point on the plane boundary, and then
again descends to the lower medium and is detected by the receiver.

TABLE 1

Hertz Vector Magnetic Field

iR ihR’ M MR hgz ,
- Mo[ e e” ] [-[2_ 20 k] kz RR, (l lklR )y

nz]g 4= R - R
Prim.ry and mirror Mo a.fi’f_'k_. LS () kR 4 1k x)
source He==724 KRR a1t '
M . 9 9i
Hy= e e | — ey R+
, 4 i
. -_;_Mz._lr.i”;._"fl'?_ + TRy (kIR’)’]'
3 2 r
= k) Oz R " M, ka(h +2 )xettR' [ 45, _
Octupole *=n (R')? (B R')
361 9
~ RV _ GR'Y
n’ _1_ nss-____
Mo [0 o H,— SMo g3 _e™(hst2)
= — :[02 Jo(n) Hy (m) 4 TR T ()
3M, 5 em(hg+z)
572 o Y (| Hym — 5 St

Planar source

According to Table 1, the refraction wave consists of two
components:

3M eM(hg+z)
Hx= 0 k3 (kX)‘ ’ (6)
*(hg+z)
9M, s
Hy= 32 b s (7)
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Fig. 2.

Turning to Ey, according to the formula

rot H = —jwe’'E

or
%——%:——imefy (8)
and considering (6) and (7), we have the following: /10
fiem Yy Rt <
T LI
4 e

Expressions (6), (7), (8), and (9) describe the field on the
lines y = 0, In the future, we
will consider that the field is
defined by the same expressions
/ for any v. In order to evaluate
/ the admissable error, we should
note that the refraction waves can
be described by a set of two-dimen-
sional sources with annular currents,
as depicted in Figure 3. A disre-
gard of the wvalue y is equivalent
Fig. 3. to a situation where the annular
current is replaced by the linear
one (see the dotted line on Figure 3), and this corresponds to a
replacement of a point source by a source in the form of a fila-
ment. It is clear from the physical materials that this type of
substitution does not bring about a large error for a cylinder
which is sufficiently removed from the source. In this case, we
can find a quantitative estimate of the admissable error. For
this purpose, the field incident on the cylinder is expanded by
plane waves with such computations that the principal term of the

122




expansion coincides with the solutions we have obtained.l The eval-
uations show that the major term describes the field in full very
well when the cylinder is a distance on the order of the wave-
length in the lower medium from the observation site. This can

be explained in physical terms by the fact that, for small radii

of the c¢ylinder, the induced currents are directed mainly along

the axis of the cylinder; therefore, the form of the source is

not of great significance [3, u].

As the evaluations show, in fulfilling the condition

wd
-K<< 1’

i.e., for a small radius of the cylinder {(compared to its distance

from the source), we can consider that the value kj;x changes little
along the cross section of the cylinder, and it can be replaced

by ki;xXg. We can then consider the fields from (6), (7) or (8) and

(9) to be plane, which simplifies all further computations to a

great extent. In this medium, there is an unbounded cylinder on /109
which a plane wave falls, l.e.,

— Xm(hs+z)[ _Q_], (11)

- 3My .3 by C
[.).:z —»21‘—: - lkl ‘/ ‘37‘-'————“—-(klx(,)4 kIXo

The front of this wave is parallel to the axis of the cylinder.

In order to find the diffracted field, let us turn to the
cylindrical system of coordinates for the following formula:

Z2=2,+ rcose,

where 2z, is the coordinate of the cylinder axis. We will consider
that the axis y of the Cartesian system is parallel to the axis

z of the cylipdrical svstem. The problem of the incidence of a
plane wave on the cylinder is then solved by the standard methods.
Therefore, we will present the prepared solution for the diffracted
field here directly:

Ey =X A HY (kyr) cos me, (12)

m=0

1 This solution is very cumbersome, and we therefore will not pre-

sent it here.
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where Ap contains a combination of Bessel functions and (1l1). When
there is satisfaction of the condition

jkal K1 (13)
and m = 0, this field acquires the following form:
~_.,._,§__ 3 (ka)? ‘l"? ik, + Les(y 15

Ey qir= 5 Mok (555 VTe (hs*20 )1 (kyr) ‘+m]’ (14)

where xy is the distance from the axis of the cylinder to the
transmitter. It can be seen from (14) that the field represented
by the first term of the series is proportional to gkla) and the
n-th term of the series contains the factor (kja)? ‘n * 13, which
guarantees convergence of the series as a geometric progression
when (18) is fulfilled, due to which the terms following it need
not be considered. This is all the more valid if we consider that
we have approximated the incident field in terms of the plane wave,
as a result of which the admissable error is comparable to the
discarded terms of the series for the diffracted field.

It can also be seen from (14) that the diffracted field which
has been found represents a sky wave propagating directly in the
conducting medium, where it attenuates exponentially. As a result
of this, the field component which has been found makes a small
contribution to the total field at the observation point.

The refraction wave produced by the cylinder itself will make
a much greater contribution if the latter is at a small depth from
the boundary, and if the following condition if fulfilled:

'klz0l< 1’

while its distance from the transmitter and receiver greatly ex-
ceeds the wavelength in the conducting medium. As metioned above,
this circumstance is due to the fact that the refraction waves
undergo exponential attenuation only along the path corresponding
to the shortest distance to the surface, while the sky waves under-
go exponential attenuation over the entire course of propagation.

FPigure 4 shows the course of propagation of refraction waves
incident on a cylinder and diffracted on it.

In order to find the field of a refraction wave going from
the cylinder along the surface to the receiving point, we will
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Fig. 4.

make the cylinder similar to a source in the form of a filament
[5], and we will call this field an incident one, i.e.,

Ly

= AHP (k7). (15)

Having solved the problem of the field of a filamentary source in
the presence of a boundary, we can find the field reflected from
it in the following form:

ref
[V Wk —) = kz] ‘V“ “ki(’”")“““‘x“)dw (18)

Ey

A

in VP' “kx [sz—kf+VPZ“k2j

Considering that

rot £ = {op /1,

we have the following expression for the vertical field component:

T 5‘ e[V =8 - w—#] X
z:———-.-—.——_—-
iopy  Ox NP04"= l/ pr— K2 Vp'?—'kg'*—l/—*ﬂ_k”
u—hu+m+mu—%) (17)
Xe dyp.

In order to calculate this integral, we will draw divisions from
the branchln 01nt u = ,2 on the complex plane in such a way
that Re along the division, and we will call that
sheet on whlch Re u? ,2 > 0 the upper one. This guarantees

convergence and freedom of the deformation of the contour on the
upper sheet. Calculations of the integral in (17) by the division
ko then give the total field of the refraction wave in the follow-
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ing form, considering (2):

3M @(kaygh<hs+2z0+z1 15
H, Hy —=20, Lol ¥ (18)
2t n (klx0)4 k'? (x — xn)3 [1 + (k,xo)'Z] '

Calculations of the integral in (17) by the division kj give sky
waves, which are much less than the field from (18) for the con-
dition in (5) due to exponential attenuation, and therefore are
not presented here.

Thus, if the source of a field, the eylinder and the observa-
tion site are located iIn the neighborhood of the boundary, then
refraction waves produced by various sources arise: (a) going
from the primary source to the observation site (these waves pro-
duce the principal part of the "direct" field) and (b) going to
the observation site from the cylinder itself (as a source of
the field). These waves produce the main part of the diffracted
field at the receiving point; nevertheless, this field is notice-
ably less than the direct field produced by refraction waves from
the primary source. Actually, if we compare (7) and (18), then
we can see that the diffracted field contains the factor (k;a)?,
which is much less than unity, and the factor ki;x in the denomin-
ator, which is much greater than unity in modulus and has a higher
power.

In order to better understand the magnitude of the diffracted
field, we will compare it to the direct one, and assume that the

hollow cylinder is in the middle between the transmitter and
receiver, so that the following equality holds:

X = 2x0'

The field ratio of interest to us then acquires the following form:

H, ..
dif __ 64/ a e 15
HZ»dir._ 3 (xo) [1 +(k1xo)2}' (19)

The ratio obtained determines the maximum distance from the trans-
mitter and receiver to the cylinder for a given radius a, for
which the field differs greatly at the observation site from the
field in the uniform two-layered medium.
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Let us now find under which conditions we can disregard the
subsequent reflections from the plane to the cylinder and back, and
limit ourselves to the results obtained. For this purpose, we will
compare the direct field of a refraction wave incident on a cylinder
for the first time [see (11)] and the field of a refraction wave
which is produced by the cylinder, reflected from the plane boundary,

and again incident upon the cylinder [see (20)]. The purpose of /112
this comparison is to lead directly to the surface of the cylinder,
and we will therefore assume that x = xg and z = zy in (17). After

calculating the integral in (17) by the division k,, we will obtain
the following field:

3Me * 1/ e (Ra» tk(hat+32z() e
Ey= [ 1 ‘/P_,o.we 1 s 0 [1+k120]_ (20)

4n ) klzo £

TABLE 2

Hertz Vector Magnetic Field

. M, ptER (',ik,R' S 5

iy =z;“{—,'g- —w iy Mo 3 mr fnz [__‘ 2"’“’]
. y =3 1 7 2
Primary and mirror o RRL R *
source

« Mg 0 (1) g

= Mol Jo(n) HY (m) Mo g3 _ehet2) 3
5 4t 9z%0y Hy = "7;0 ki (&,x)® . (kyx)2

Planar scurce

Mo 2 [ JmR
I, =2 ( M hiR" 3 3¢
N 5 [} ~ o k3 .e_———{——— — 57 l]
2xk? 0z0y \ R Hy= 5o GRY | GRE Bl

Octupole

Having compared the secondary refraction wave obtained to the
refraction wave incident for the first time on the cylinder, we
find that

M -1 (_‘i)z ez,
Ey(ll) 2 20




The condition for applicability of our method of successive approxi-
mations follows from the requirement that this ratio be small: ac< zg.
Therefore, in deepening the cylinder zy by several of its radii a,

we can disregard the subsequent reflections and limit ourselves to
the result of (18).

All the calculations presented above w._re carried out for a
vertical magnetic dipole. For a horizontal magnetic dipole, the
calculations are carried out by similar methods; therefore, we will
present here only the final results. It is considered that the
horizontal dipole is directed along the y axis parallel to the axis
of the cylinder.

The Hertz vector of the complete field, in its reflection from

the plane boundary, when the dipole is in the uniform two-layered
medium, has the following form for the same approximations:

[—l‘ Mo elR R’
y——T;[ R R L

oM (2 & (e"‘t”') ~l 0 70
I—-‘[z Ty {;{ . '(—)—)Ta_; ‘ ‘“RT‘ ‘IL 7;{ 9220y [J’o (”) I{O (m)] ’ , ) "
22 13

Where the first term of II¥ desgribed the field of the primary source,

while the remaining terms”of HY and H§ are due to the presence of a
plane boundary.

Expressions for the direct field in the approximation we are
studying are given in Table 2. It can be seen from this table that
the principal field component, as before, 1s produced by a refraction
wave of the following type:

UNG +z)
M, e ! s 3
Hy=— 5 B~y [‘ + (kxx)zl' (23)

In the diffraction of this field on the c¢ylinder, the latter produces
a refraction wave, and this wave plays the major part at the receiving
point. The ravio between the diffracted field from (23) and the
direct field of the planar source then acquires the form of

Ayair a)’

Hygir N (24)
Having compared (24) and (19), we can conclude that a vertical

magnetic dipole is more sensitive to all discontinuities than a .

horizontal one.
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DIFFRACTION OF AN ELECTROMAGNETIC WAVE ON A HOLLOW
SPHERICAL DISCONTINUITY IN A CONDUCTING HALF-SPACE

0.G. Kozina, A.I. Pevzner and D.N. Chartorizhskiy

ABSTRACT: This article treats the problem of
the case when there is a discontinuity in the
form of a spherical shell located in the vicin-
ity of the boundary surface in the conducting
half-space of a two-layered medium. It is shown
that the field of a vertical dipole is more sen-
sitive to discontinuities than that of a hori-
zontal one. It is also shown that, under cer-
tain conditions, the ratio between the field
diffracted on a cylinder and the direct one is
always greater than in the case of a sphere,

and that this result can be anticipated by con-
sidering the geometry of the problem

The problems of the diffraction of an electromagnetic wave in/l1lh
a two-layered medium consisting of conducting and nonconducting
half-spaces divided by a plane surface were investigated in [1, 2].
In [2], the solution to the diffraction problem was applied to the
case when there is a hollow cylinder of infinite length in the con-
ducting half-space, -in the vicinity of the boundary. We will ex-
amine a similar problem, for the case when there is a discontinuity
in the form of a spherical shell located in the vicinity of the
boundary surface in the conducting half-space. The source of the
field is a magnetic dipole (horizontal or vertical, located in the
conducting medium). The problem is solved on the assumption that
the radius of the sphere is small in comparison to the wavelength
in the conducting medium. It is also assumed that the distance
from the magnetic dipole to the point at which the receiver is lo-
cated, and the distance from each of these points to the sphere, are
much greater than the wavelength in the conducting half-space but
less than the wavelength in the nonconducting medium.

Let the lower conducting half-space in which the sphere is
located be characterized by the parameters €7 wuj and oj3. The upper
half-space and the cavity of the sphere have parameters of e, and
Ho (05 = 0). We will use the Cartesian system of coordinates in
such a way that the plane z = 0 coincides with the plane of the
division between the two media, while the axis 0z passes through
the source of the field (see the figure). The coordinates of the
source are 0,0,hg; the coordinates of the center of the sphere are
®p»0,29. We will be interested in the field at the receiving point
located in the conducting medium which has coordinates of x,0,z.
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The problem will be solved for the case of smallness of the
sphere a in comparison to the wavelength in the lower medium, when
the distances xgp, x and (x-xp) are much greater than the wavelenghts
in the lower half-space A3 and much less than the wavelengths in
the upper medium A,. Moreover, we will consider that the depth of /115
the dipole, sphere and receiving points is not substantial when com-
pared to the horizontal distances, i.e.

max {fs, 2, 2} € min'{X, X, (x — x,)}- (1)

The field at the receiving point can be represented in the
form of the sum of

- = —
H=Hg;r+Hg;r, (2)

where Hgiy is that part of the field which is produced only because
of diffraction of the field of the source on the surface of the
boundary between the two media, in the absence of a sphere; in the
future, we will call such a field a direct or undisturbed field;

ﬁdis is the supplementary Field (disturbance) caused by diffraction

on the sphere of the field ﬁdir- It is our task to calculate this

value.
€a,1t, (82=0) |0 4
51)#’1.5!
1 Za
FauX z ——
I h £ 4 .
FA Receiving
point
2

The first component can be found from the formulas obtained in
[1]. 1In the case of vertical orientation of the dipole, the Hertz
vector for the direct field in the lower medium has the following
form:

[T tofert A 2 o(ere)
TH&UR TR T 02U RR
n 03

—wi 2 [Jo(n) HE (m)] — e [Jo(n) HE (m)]},

(3)

where My is the magnetic dipole moment;




R=Vx'4(z—hy;
R =V x*+(z+hg)*;
=3 VR~ @+h;

=BV RYFET A

Jgo and Hgl) are the Bessel and Hankel functions of the first type,

respectively;

k? = k%e;up'l my

e and Wiy are the complex relative permittivity and relative mag- /116
netic susceptibility, kg = 2n/A is the wave number for vacuum.

We will solve this problem by the method of successive approxi-
mations, using the fact that the field in the lower medium can be
represented as the result of multiple reflection of waves between
the discontinuity and the surface of the boundary, when there is a
discontinuity in it.

For example, we can construct the following qualitative picture
for the case under investigation. A wave propagating from a source,
after being reflected from the surface of the boundary, falls on a
sphere; scattered by the sphere, it is again reflected from the
boundary surface, and a wave which returns to the surface of the
sphere 1s formed; this wave diffracts on the sphere a second time,
etc. As a result, a fleld formed by the waves undergoing single,
double, etc. reflection is added to the field ﬁdir at the observa-
tion site. TFrom the mathematical point of view, these waves are
terms of the series of successive approximations for the field

dif.- As will be seen from subsequent calculations, this series
converges very rapidly, which can be explained by the large amount
of attenuation iIn a medium which has active losses due to the
existence of conductivity.

We will calculate the results of reflections described above
in order, and we will first define the field which produces a wave
scattered once by the sphere at the observation site.

N The values for the direct field are given in [1l] in terms of

H and E. In view of the fact that these expressions are somewhat
cumbersome, we will not write them out in full. We will only
mention that, as was shown in [2], for distances between the sphere
and the source of xg >> Aj;, which are small in comparison to the
horizontal distance for the depths of submersion (zy << x3), the
field in the conducting medium is determined mainly by the refrac-
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tion wave which has the following components:

3Mg 3 elhl(hs-t- z) .

Hy=—> o (u)
M, elfi(Bgt 2)
He = Bl ~ ey (5)
__3M, B eity(hgt T) 15
£, =S Vi S |1+ (&)

These expressions define the field of the incident wave on the

lines y = 0. However, since the dimensions of the sphere are small
(Ikla[<<l), we can consider that the field is determined by the

zsame expressions for all values of y on the surface of the sphere.

The correctness of thls assumption was discussed in [2]. In this /117

case, a disregard of the dependence between the field and y in the
neighborhood of the sphere results in even lesser errors. Moreover,
when there is a satisfaction of the condition

Xy Ga ( 7)
we can consider that the field in the neighborhood of the sphere
also does not change along the direction x, and that the wave
incident on the sphere is plane. The components of this wave are
found from (4), (5) and (6) by replacing kjyx by kixg. The field
of the wave scattered by the sphere is easily found by such simplifi-
cations.

The problem of the diffraction of a plane wave on a sphere 1is
solved by the standard methods [3,4]. We will discuss the solution
briefly in order to clarify the nature of the assumptions we have
made. We will use the spherical coordinates r, 6 and ¢ with origin
at the center of the spherej; they are linked with the coordinates
introduced above by the relationships

x=x,+rcosesinb,
y=rsinfsine, (8)
2 = z,-} rcosé,

It is convenient to describe the field in the spherical system of
coordinates with the aid of Debye scalar potentials U and V, which
are connected to the Hertz vector by the following formulas:

— - —
Il =T,e, =rlUe,

- . - (9)
O =Ile, =rVe,,

1 This condition follows in an obvious manner from the expansion
of (6) into a Taylor series.
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where I, and N are the radial components of the electric and
magnetic Hertz vectors, respectively.

In the case under investigation, a plane wave falls on the
sphere, propagating in a direction parallel to the axis oz, and the
solution for the wave scattered by the sphere can be written in
the form of the following series:

0 X, 2 1 g, (k
Yop=Nisine g5 3 iyt gy g Pa(cos )

n==1
0N ,np 21 En(lir)
‘é.ef=N2COS?%2ibnm k:’ P (C080)+

n=1

41 En(Ryr)
+N"2.4‘"”"n<~+l> Thr Oncosh), (11)
Where N;, Np and N3 are constants depending on the amplitude of /118

incident wave, i.e.,

g () = VTS HY 1 (k)
2

kb (Bi2) 4, (ky3) — Fypy b, (B12) ¥ (Ry8)
kot (#,9) € (k,2) — Rypo,b, (£10) €, (Ry3) 7
k p.,,mdl (%, a)tll (ka)—k (la (%, a)(ll,l (k a)
Rytom ¥y (£2) € (R,0) — Ry ¥y (R2) &, (£10)
kg = kgEQmp'zmv
€om and uop are the relative permittivity and relative magnetic
susceptibility of the "sphere;

btk = VIS 1 )

2

The small dimentions of the sphere allow us to consider only
the first terms of the series in (10) and (11), i.e., the solution
to the problem in a dipole approximation (see [5], for example).
Having retained the first terms in the series in (10) and (11),
having written out the coefficients Nj, Np and Ny in explicit form,
having replaced the functions yn(z) and £n(z) by their representa-
tions in the form of series, and having used the condition
IkQa]<<|kla|, we can obtain the following expression for the field
reflected by the sphere after a number of transformations:

3M, > e'ti(ngt?y [ ]
Uget=1 382 k0 Y & (riay o2 |1+ g X

lk.r
XsincpsinG(,r( Trr ),




ik (h ad thn’
M
Vref= __Okl (k,a)® € (z:)__‘ sinecosqaor( Tt )
M P lk‘r 2 (lla)
+ ok (& FAD 0865’( Byr )

It is easy to see that the field described by (l0a) and (lla)
can be represented as the sum of the fields produced by one elec-
tric and two magnetic dipoles located at the center of the sphere.
Actually, we will use a Cartesian system of coordinates with origin
at the center of the sphere which is connected to the spherical
coordinate by the following relationships:

x" =, sin8cos 9,
=rsinfsino,
2’ =rcosf. (12)

Converting from the Debye potential Upef to the Hertz vector with /119
the aid of (9), we find that

ik, (h + ZO)

n [ elkl

Let us note the obvious equality of

ST LN ) . N

¥ grad <—El——) = grad (y BT Erer - (1u)

Having substituted (14) into (13) and having rejected that part of

lkll"
the expression which contains the factor grad <y'3————-), we find

the following: kar

elk,r —

2 .3M a ’ e”‘l("s“"o)[ 15 ] >
Me=—i _4;0- ky V ¢ (kaay’ (Ryx0)* ! +(k1x0)2 kir €y - (15)

Expression (15) is a record of the field of the electric dipole
which is located at the center of the sphere and directed along the
axis y'. Having performed similar operations, we can convert from
the potential V,of to the magnetic Hertz vector, and we can repre-
sent the field described by the latter as a field of two magnetic
dipoles, one of which is directed along the axis, z', while the
other is directed along the axis x'. However, it is easy to see that

21n writing out (lla), we discarded the zero term in the second
series in (l11), since, in transferring to the Hertz vector with the
aid of (9), it gives the complete gradient of the function and can
be disregarded because of the gradient invariance of the Hertz
vector.




the fields B and H produced by the magnetic dipoles are much

smaller than the fields produced by the electric dipole, since

the dipole moment of the magnetic dipoles contain the factor (kla)s,
while the dipole moment of the electric dipole is proportional to
(kja)3. Therefore, we will disregard the fields produced by the
magnetic dipoles, and we will disregard the fields produced by the
magnetic dipoles, and we will consider the field scattered by the
sphere as the field of the electric dipole located at the center

of the sphere and directed along the axis y'.

As was mentioned above, in order to determine the addition
ﬁdif at the receiving point, we must consider the diffraction of
the field scattered by the sphere at the boundary of the division
between the conducting and nonconducting media. In this case, the
problem is reduced to an investigation of the diffraction of the
electric dipole field in the two-layered medium. This problem is
solved by classical methods, and we will not discuss its solution
here., We will only mention that, for distances of x << Ay, the
formulas for the fields have the same structure as the formulas
presented in [1].

In the case under examination, the receiving point is removed
from the sphere by a distance of |x - xo| >> A13; therefore, for
shallow (compared to the horizontal distance) depths of submersion,
the field at the receiving point will be produced because of the
refraction wave going from the sphere, in a way similar to that for
the cylinder in [2]. Computations give the following result for
the vertical component of the wave undergoing single reflection from
this sphere:

b (hat22,4 2
aM ‘ ik, (Mgt224 2)
H, ~ 22 k3 (k0 —<

i (1) /124

(Byxo)* £ (x — x)t

A comparison between (16) and the field of the direct wave,
the main part of which is given by (5), shows that, even for single
reflection, the wave arrives at the receiving point in a greatly
weakened state; a supplementary factor (kja)® arises in the expres-
sion for the field in this case. Moreover, as can be seen from
(16), the amplitude of the reflected wave decreases exponentially
with an increase in the depth of submersion of the sphere. As was
noted before, the addition of Hdif to the field at the receiving
point, which arises because of the diffraction of the wave on the
sphere, can be found as the sum of the fields of waves undergoing
single, double, etc. reflections between the sphere and the boundary
surface. However, it is easy to see that only the singly reflected
wave should be considered. Actually, for a submersion of the
sphere at a depth on the order of several of its radii (the latter
condition is necessary in order to consider the sphere as a point
source ), the amplitude of the wave undergoing reflection twice con-
tains the factor (kla)6e1k1“20; that undergoing reflection three
times contains the factor (kla)9e1k1620, etec., i.e., the fields of
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these waves can be disregarded. This problem was discussed in more
detail in [2] for a cylincder, and we will not stop on it. Thus, it

H(l).

-
can be considered that the addition to the field Hd?f ~ z

/H we will assume that

In order to evaluate the ratio H

zdif’ zdir?
X = QXO, i.e., we will cornsider that the sphere is located in the
middle between the receiver and the emitter. For H we will take

zdir?
its principal part determined by (5). Then
el k22,

. 17
(f1x0)° ( )

Hz 33t = 32 (k,a)?
“dir

The ratio in (17 ) makes it possible to determine the maximum
distance from the emitter and receiver to the sphere for which the
field at the receiving point differs substantially from the "un-
disturbed" one.

The calculations presented were carried out for the case when
the dipole of the source has vertical polarization. For a horizon-
tal dipole, the problem is solved in a similar way, and we will
present only the final result.

The direct field at the receiving point can be obtained from
the Hertz vector describing the field in the lower medium. The
expression for it is presented in [1], and has the following form:

Y R R

=4 [ — 7=, (18)
« My (2 @ [&BR B 1)
ﬂ:—r,‘:{,,z 6y0z( 7 )*‘Xg"o"yo“zz{fo(”)m (m)]}- (19)

>
The principal part of the field Hy, 6 obtained from (18) and
(19) with the aid of (3) for distances of x>>\;, for depths of
submersion which are small in comparison to the horizontal distance,
is determined by the refrection wave which has the y-th component,
i.e.,

~
=
[}

M, "‘_f’i_"_(hii[ _—3——] (20)

Hy= =z R (21%)° (kyx)*
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The addition to the direct field of Hdif is determined mainly
by the wave reflected once from the sphere. The horizontal com-
ponent of this wave is

> M ik, (hegt 220+ 2)
Hygdif = — 52 ki (ha)* 2~ -
(f1x0)" By (x — xp)
4 My s (s’ G (g 2zo+2) (21)
I P xR e — xo
The ratio Hydif/Hydir for the case of x = 2xo and sufficilently
great distances has order of
H, ..
vd ik,22
1) indy (22)
*dir (R1.x0)

A comparison of (22) and (17) allows us to conclude that the field
of the vertical dipole is more sensitive to discontinuities than
that of the horizontal one. The latter was already noted in [2] for
the case when the discontinuity represented an unbounded hollow
cylinder. Moreover, comparing (22) and (17) to the analogous ex-
pressions of (25) and (19) in [2], we can conclude that the ratio
between the field diffracted on the cylinder and the direct one, for
sufficiently small a/xo, is always greater than in the case of a

sphere. 1In addition, this result was anticipated by considering
the geometry of the problem.
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SOME FORMULAS FOR SHORT-WAVE ASYMPTOTICS IN THE THREE-
DIMENSIONAL PROBLEM OF DIFFRACTION ON SMOOTH CONVEX BODIES

D. Sh. Mogjlevskiy

ABSTRACT: This paper treats some formulas used
for short-wave asymptotics in the three-
dimensional problem of diffraction on smooth
convex bodies. The studies of V.A., Fok and
V.S. Buslayev in this regard are discussed, and
combined formulas for these problems and the
problems of light and shadow are given.

INTRODUCTION

Let S be the surfacs of a smooth convex body. The stationary /122
problem of diffraction on the body 8 of waves from a point source
located at point %' is then formulated in the following way:

A+#) U=—5(x - 1),

U|S=O’
r (G — ikU) 0.
r —co
We are looking for the asymptotics of the function U for k » «. It
has been shown in studies treating this problem that the asymptotics
differs greatly in regicns of light and shadow. The asymptotics

for the boundary layer near the surface of the body is found by the
method of the parabolic equation developed mainly in the works of
V.A. Fok (see [1], for example). Excellent formulas were obtained
in [2] for the regions of light and shadow. However, these formulas
lose their significance in the vicinity of the geometric boundary
between the light and the shadow, as well as in shadow in the
boundary layer around the surface of the body.

In 1962, V.S. Buslayev [3], using the method of the parabolic
equation, obtained formulas for the two-dimensional problem which
were valid in all regions and converted into Keller formulas where
the latter had significance. In 1964, a detailed review of the
work of V.S. Buslayev [4] was published. In this study, we will
generalize some results of Buslayev for the three-dimensional case.
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I. DERIVING THE ASYMPTOTICS IN SHADOW AT THE BOUNDARY LAYER /12

1. Geometry of Enveloping Waves

The phase of the enveloping wave is used for the region of the
shade (Fig. 1), i.e.,

(":t,+s+t,

where t' is the segment of the tangent from the source to the surface
of the body; s is the geodesic segment; t is the segment of the
tangent in the shaded region.

The phase ¢ satisfys an eikonal equation

(v@)*=1.

For the case when the observation point 1is on the surface of the
body (for t = 0), we will use the designation ¢ (t = 0) = u. The
enveloping rays on the surface form a set of geodesic lines. We
can use an orthoganal semi-geodesic system (u, v) with Lamé co-

efficients of h. = 1 and h. = h_ (u, v).
u v v

In the neighborhood of the
surface, on the boundary layer, we
z* will expand ¢ by powers n:
3

D, v n)y=u-+dn° +
5

¢ (5
+82nz+0(n2 ) )
&)
“ where n is the length along the
)1 normal to the surface at the point
(u, v);
— 8, =3,(x, v).
[

Calculations show that

:LI 9

2 2
T =, (1.1)

Figure 1. '
3816,—}-81:0. (1.2)

Here e is the radius of curvature of the line u at the point (u, v);

8"_081(11’ v)
P=
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Let us introduce T = - 8 1n?. Then,

1

h ’
A@A4-) [ymp =28 + 42, by =

u

2. Calculation and Matching of Exponents' /124

We will look for the enveloping waves in the following form:
77 Ceilz('b §~—.)V

We will write out (A + k?2) U in the following way, considering
that (Vé) = 1:

A+ ) U=Ce™ AV ik [2(9V, v(@+1)) +
+ VA(@+s)] — BV [2(vD, ve)+ (vo)]).

Consequently, the eguation for V has the following appearance:

AVAik 2(vl, v(®+4x)) 4 VA (® 1)) —
— BV [2(y®D, y=) 4 (yx)?] = 0. (1.3)

Let us examine (1.3) at the boundary layer. For this, we must
substitute into (2.3) the expansions of ¢ and v by powers of n,
instead of those values themselves. At the boundary layer, high
values of k will be compensated by low values of n. Factors of

q :
tile type kP n7 will be introduced into the coefficients of the

2
equation. Arguments similar to those in [3] show that n'~k®. The
-2

thickness of the boundary layer is then on the order of k 3, while
5 1 &
3n ~ k3. The highest orders in the equation are k3 and k.

We will write out only the terms for the two highest orders:

a
Vian ik [2 Vet4%,nV, + V(233+ h—v)] —
- — v

9 2 3 (1.4)
—k’V[—TB?n—ealswz —25;n2J =0.
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3
2

The terms containiEg n“ are kept because of (1.2). The terms of the

principle order (k%) are underlined. The remaining terms are of
order k.

3. Deriving the Parabolic Equation and Calculating
the Smooth Factors

Let us introduce new variables

()7 [

u
2 N (1.5)
p= an(%af)a

The variables u', u' and n' relate to the source, while the vari- /12

ables py, u and n relate to the receiver. In determining A, inte-
gration is carried out along the geodesic line v = const. For
subsequent symmetrization, we will consider that the source is also

on the boundary layer, n'~%k3.
We will look for the solution in the form of

V=9, )¥Q, p, )

We must again consider the differential operations for the new
variables (only in the two highest orders) and substitute them into
(1.4). We then Ffind that

4 2
k? (_4_0.]4,),, ? [Ppp -+ T 4 pT] +
. 4 1o’ 3 n (1.86)
4 ikopT,, [482 + —3"51 31] -+ iRY [2?' + @ (28, -+ h—")] = 0.

The second brackets in (1.6) is equal to zero because of (1.2).
Having made the first brackets equal to zero, we obtain the follow-
ing for the equation for V¥:

Yo + i 4 p T =0. (1.7)
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Equation (L.7) is often found in studies on diffraction. It is
usually called "parabolic", although it is actHally a Schrddinger

equation. The terms of the principle order (k3) are kept in the
equation for V because of ¥, while the terms of the next order (k)
are kept because of ¢. We can obtain the equation for ¢ by making

the third brackets in (1.8) equal to zero:

3

2?'+<P(233+:—:)=0. (1.8)

We have obtained an ordinary differential equation. Having inte-
grated it, and having considered (1.1) and (1.2), we find that

1 1
¢=Cp Sp, 2 (1.9)

4. Final Formula for the Boundary Layer
We still must integrate (l1.7), with a consideration of the

boundary condition that W|H=G = 0 and a condition for u > « equiva-

lent to the condition for emission. Moreover, we must consider the
reciprocity theorem: There should be symmetry relative to the
rearrangements of the source and receiver. Let us write out the
solution for ¥, following [4]1. The final formula has the following
appearance:

-
6

1
(@)ho T, p, 1), (1.10)

U=_Ce™ (°+")p_ B (w)p
where 3 3
= A(w)n’ —8w)n'?;
N il
0N, = "5 —_—
o8 P’ (1.11)
— 1wy (5 — )
V= 5. dle _—E}T(C) G(Ca B);

GE p)=w,C—p)w, (3) —wQ)w, (C—p)=
==2[v(C —mw, () —v @) w, (L —p)].

The definitions and properties of the Alry functions w;, wy and v
can also be found in [u4].
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IT. MOVING FROM THE BOUNDARY LAYER IN DEEP SHADOW
1. Geometry of the Enveloping Rays

Let us use a radial shadow coordinate system. -‘The point is
determined by the coordinates (u, vy ®); (u, v) are the coordinates
of the point of separation of the ray; ¢ = u + t. The beam system
is orthogonal. ¢ = const is the wave surface, the principal radii
of curvature of which are

p‘-_—__—t, pz..—_."pg + t.
The Lamé coefficients are

J 4t
he=1, hy=h, Pzt' .
P2

Here h3y is the third Lamé coefficient
of the radial system in space, while h

3
i;;g;;;;;ééz relates to the radial system on the
u

surface; low is the radius of curvature

of the line u at the point of separationm
N of the ray;

L 0h
Figure 2 hy  Ou

All of these formulas are obtained by
the methods of differential geometry.

We will express the variable boundary layers in the neighborhood
of the surface in terms of the radial variables (Fig. 2) thus:
1
p(u)=p(8)+0(n2),
3
2pn=t2+0(n2),
a2 s 2 2

~2 -2 2
[o Tao=[p Taotp *()t4p T ()¢ +0(n).

u' ry

Here u is the basis of the normal, while s is the coordinate of the
point of separation.




2. Buslayev Formula /127

Let us replace the variable boundary layers (B) by the radial
variables (t) in the boundary-layer formulas, according to (2.1):

+
jp— do, (2.2)

After substitutions, we obtain the following Buslayev formula:

3
1 2
-L 1 1 _1(2 yT 4 2

3
—_—— —_—— — _____Y'T)
U=Ce*p ®(s)p ° (s')hs Ze *° e, Y, Y. (2.3)

Here hg is the Lamé coefficient in the radial system, while the
superscript (8) for ¥ signifys the enveloping wave.

Formula (2.3) also 21as significance beyond the limits of the
boundary layer. It satisfies the equation only in the principal
order [and not in two orders, as in (1.10)]. Beyond the limits of
the boundary layer, (2.3) converts into the Keller formula. In
order to show this, we must take the integral for ¥ by deductions,
and substitute the asymptotics of the -Airy functions, as was done in

[4]. The Buslayev formula loses significance near the caustic (hz + 0
for a formal sign). In these regions, it can be specified by one of
the famous examples (see [6], for example). If we assume that hjy =

const, we obtain the Buslayev formula for the plane case.

I FORMULAS FOR THE ASYMPTOTICS IN LIGHT,

II.
LIGHT-SHADOW BOUNDARY AND SEWING OPERATION
1. Geometry of the Reflected Rays
Within the framework of geometrical optics, the following

formula is valid for the amplitude of a wave from a point source
(spherical) reflected from a smooth convex body:

P-_—.[(t' + £ 4 2t (¢ 4 8) (2Hcos 1 4-p3ne ") + 4Kt=t"f]" T, (3.1)

cos 1
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This formula was derived in [5]. We will write out the symbols: /128

t' is the length of the incident ray (Fig. 3); t is the length of

the reflected ray (Fig. 3); v is the angle of reflection (Fig. 3);
f; and £, are the principal radii of curvature of the reflector at
the point of reflection; o is the angle between the plane of reflec-
tion and the principal section of curvature with the radius fy; H is

the average curvature,

' is the curvature of the normal section in the reflection

2a sinZa
[ = o8 + .

fi S
K is the total (Gaussian) curvature,

1
K__Eﬁ'

The pPrincipal radii of curvature of the reflected front at
tion point are:

1 1 ata
——”=77+' !

", cosy ’
a =2Hcos?* 7 4 I'sin? 7,

4, = V& =i cos™ 7.

2. Bustayev Formula for the Reflected Wave
and the Sewing Operation

We will use the symbol

b 2

“a—{-a"

plane,

the reflec-

(3.2)

(3.3)

We will call the smaller radius of curvature of the reflected front

b, i1.e.,

i i
T——t’—_*—bcosy‘

o
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Let us use the following "reflected-ray" variables:

M=(-k2—b-)%, T=(—’;i)t, r:(%)t', S = Mcosy, (5.5)
X=T4T, Y=T(T+25), V=T (T +25). |

The value b is a continuous extension of the shadow radius p. All
the variables X, Y and Y' are extended continuously from shadow to
light. The Lamé coefficient hy is determined in the following way:

in shadow,

0
t
hy=h, 2L (3.6)
121
in light,
0
-t
/,';_____[» p?“{; /129
9]
We did not define h, unambiguously before. In order that hji be

extended continuously from shadow to light, we must assume that h,
equals t' at the boundary between light and shadow. The phase of
the reflected wave, i.e.,

(I)R =t'+t
is a continuous extension in light of the enveloping phase
Dg=1¢ + s+t

We will continue the enveloping wave into the light range with the
aid of (2.3), in which the variables were determined by (3.5), and
with (3.6).

Thus, the enveloping wave

_ 1
6

1 1 1
U = e (L]0 T (s)e T () hs T WX, ¥, ¥y, (3.7)

2

where

Y
Fo= 2y 4 v7),

[

g et | gpex e — 1) G, 1)
I GRS
T
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x L1
Compared to (2.3), there are other constants here, including (2)°%.

This was done for the sake of convenience in the sewing coperation. We

(8)

will extend U into the light region with the following formula:

Lo (3.8)

1
U = Celk‘PR (_;_)6 b 3 h3 2 e—‘FRw(S) (X, Y, Y/)’

where

3 3
FR~=—S’X+—§-(Y+2S)2 4——2‘;—()”—1—28)2 ~-;3‘,—S’- (8.9

(s)

We will now write out V¥ in the form of the sum of two terms,

using (1.11):

1

w 4o
gy
v® _ ° 5 die*w, (. — V)v (i —Y)~

n? (3.10)
Mt
e * vt -
o gdCelcxwl(ﬁ— Y) wx((c)) w, (C—Y').
n? Y
The first integral is calculated precisely according to the /130
formula derived by V. A, Fok [1], i.e.,
b~
PG - L
= | @ =Yy - V) =X TP (8.11)
1!2 ey
where
=— Ly ! (Y —ry 3.12
Q= = XX ) L (¢22)

Correspondingly, be dividing W(S)

form of the sum of two terms, i.e.,

we can represent U in the

U=U"4u®

Where U<®) corresponds to the direct wave. Using (3.11) and (3.12),
it is easy to find that
1, 1
U® = co' *TR*2-FR) s Tq); £
At the light-shadow boundary and on the surface of the reflector,
£ih®o
[

U®=c
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i.e., U there coincides with the direct wave, if we specify that

1
C==3;.
%29 is the phase of the direct wave (length of the direct beam in
light). The second term U(R) corresponds to the reflected wave, i.e.,
1 ike k'l——-—l- :
R kTR 6 7 _—~Fp @R
UR = ¢ (7) b Phy PeTRER (X, ¥, 1, (3.13)
where
-8 (3.1u)
wR ¢ de X (7 —a RAGE
——T .€ ‘Zt'l(,——Y)wl(:;) '&'I(C—Y’).
n? Y.

3. Converting the Buslayev Formula into a
Formula of Geometrical Optics
We can calculate W(R) asymptotically for regions far from the
shadow:

1

—FR\p(R) / ) X3
e R (x, Y,Y)—)—(W)Q. (3.15)

These calculations are presented in [u4].

Having substituted the values for the variables in (3.5) into
(3.13), and having considered (3.15), we can find the following
asymptotically:

i 1
wm»_%jm%2eq4+ﬁiq2

bcos 1

If we substitute b and hsy in (3.3) and (3.6) into the latter formula, /131
we obtain (3.1), i.e. a formula of geometrical optics. Naturally,
1

there are no phase factors or coefficients 47 in (3.1).

IV. SUMMARY OF THE RESULTS OBTAINED

Let us consider the function U%:

U U In shadow
= 1 el ki,
= o+ U® 1n 1ight
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U(S) is determined by (3.7), while U(R) is determined by (3.13).
This formula converts into a formula of geometrical optiecs in the
region of bright light, while it converts into a Keller formula in
the region of deep shade when the latter has significance. The
function U* satisfys the boundary condition precisely, and the
condition for emission when going to infinity. It is continuous at
the boundary between light and shadow; however, the derivative for
the normal to the shadow boundary has a discontinuity. All this
allows us to confirm that the funcetion U* is a precision of the
previously-known formulas and combines them into one in a certain
sense. It was proven in [4] that a function analogous to U%* in the
two-dimensional case satisfys the equation in the principal order in
all the regions. These rarguments are transposed for the three-
dimensional case with trivial changes. In conclusion, we should
mention that (1.10) represents the asymptotics more precisely than
(3.7) in the boundary layer in shadow, since it satisfies the
equation for the two principal orders.
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EFFECT OF A STEPLIKE DISCONTINUITY ON A FIELD
IN A PLANE WAVEGUIDE

B.V. Nerinovskiy

ABSTRACT : This article treats the effect of a

steplike discontinuity in a plane unbounded

waveguide with ideal walls. The problem 1is

reduced to solutions to Maxwellian equations
which satisfy definite boundary conditions,

solved by the method of successive approxi-

mations, using the Schwarz algorithm.

In this article we will attempt to consider tt: effect of a /132
steplike discontinuity in a plane unbounded waveguide with ideal

walls.

We will consider that the waveguide, unbounded in the plane
(x,y) of the Cartesian system of coordinates x,
vy, 2z, appears as shown in figures 2 to 4, More-
over, we will assume that the waveguide is ex-
cited by a filamentary source passing through
the point x = 0, z = a along the y axis (paral-

lel to the step). Thus, the problem amounts to
finding a solution to Maxwellian equations which
satisfies the following condition on the surface

of the waveguide S:

Elg=0.

(1)

We will construct the solution by the method of successive

approximations, using the Schwarz algorithm,

Let us make some comments relative to this method.
assume that we want to finé a solution to the equation

o2y | O%u | d%u
—Au==d—x'2+3')72+*(§—,+k,ll=0

We will

(2)

in a certain region Q, as cepicted in Figure 1, for the extreme

condition

u{s=qus7




where ¥ is the function defined in Q. Furthermore, we will assume
that we cannot solve this boundary problem, but that we can solve
the boundary problem for (2) in rggions Q; and Q,, which are bound-
ed by the surfaces S;US; and S,US;, respectively, whereas S;US, = S.

The Schwarz process consists in the construction of a sequence /
of approximative solutions {ulk)} according to the following scheme.
The function u'l) is found as a solution to (2) in the region 9,
under the boundary conditions of

w® 's.us; = ¢s,us; (W)

and is defined supplementarily by the condition w(l)s Yy in the
region 2 ™~ ;. Subsequently, assuming that

my| @Y, (k=] (5)
M)k_wb uls,=u 5o
and
QR+ __ (2k+1) | , 2k) ),
u 'S"“df‘.s» u )I.S‘]:u( ),51, (6)
we can construct the sequence of the functions {u(k)}, k =2, 3,...,

which are definite over the entire range £ and which also satisfy
(2) everywhere in 2, except for the surface S/ and Sj.

It was shown in [1] that, in the case when the range is finite,
the operator is positive definite ¥ € L,(Q), the sequence of {ulk)}
converges in L,() to a solution of the formulated problems for u
(x, y, z), whereas u{k) 5> u uniformly in any internal subregion
of Q.

Generally speaking, the finiteness of the region 2 is not a
fundamental condition for the convergence of the Schwarz process
f2]. In our case of an unbounded waveguide, the solution to the
problem should describe a field which attenuates at x = + ® ,
which naturally implies the existence of a positive imaginary par
(although very small) for the wave number k.

We will discuss three different cases for the relative posi-
tion of a source and discontinuity below; they are illustrated
by Figures 2-4, respectively. In the future we will agree that,
if h: is the altitude of the j-th part of the waveguide, then hy
< %k for j < k.
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1. Constructing the Solution

I. Let us begin with the case of a steplike connection between
two waveguides at different heights, when the source is the lower
one (see Fig. 2). In correspondence with the scheme of the Schwarz

method, we will divide the space inside the waveguide by the imag-
inary surfaces S35, and S,;, and then we will construct the sequence
of the solution, i.e.,

0B EO, L (7)

I~

where E(1) satisfies the condition

A0 _. =0

ECs sy = E ls,, U5, = 0 (8)
£(2) satisfies the conditions

(o3
@] _ NP — ED:
Em%=fsg“—005 @1 E%; (3)

B<3) satisfies the conditions

&
3) _ 3 — @,Q (3) — E(2)
EOs, s, = E®ls,,=0% £ ls,, (10)
etc.
s Each term in the sequence of
2 o 2 (k) (x = 1, 2, 3 ...) satisfies
= —:-*---—E ------ - the boundary conditions of (1),
L. fﬂ : as well as the Helmholtz equation
S ¥ San z in (2) - everywhere inside the
waveguide, except for the surfaces
Fig. 2. Si2 and So;.

We will introduce the functions

Zny(2) = sin (—%‘3) )

and
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— 2 _ (=1 )\?
b=V b (,,j) , (12)
Then, for x = 0,

EN = Y C,Z, (2) e (13)
p=1

Further, we can note that the function

i 2 Z 3 (2) Zp3 (20) ( kg (F+%0) —2ikpgr _ plkgy (Fe=3))
hy kns
n=l
. for x< Xp
?2 - ) (lL" )
x 2 Zp3(2) Zm (%0) (gihna (550 = Bhygt ettna =)
hg kni
=1
L for X> X,
In the region of x, %y = r; 0 =< =z, zg < hj satisfies the equa- /13

tion

A,?_Fk?f‘o::a()»’* xo)a(z—ZQ) (15)

and the condition

o} e e =0
S (16)

Consequently, considering (9), we have the following for x 2 r:

hy

EO __5(E<12%%)x0=r dz, (17)

0

ED = 3 TpZ,y(2) €m0,
nel ( 18 )
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where

Tn = 2 Cpl"npe *n”

(19)
2 ¢ ' Pt
= | Zna(20) Zpn (20) d2= g sin [= (6n — )]
P, (20)
For the sake of convenience, we introduced the parameter & = hy/ho,
where 0 < & <« 1.
The function
4 Zm (2) Zm1 (20) ,*m k=Xo) ol xS X,
Ty 2 km > %
=
(21)
. Zm1(2) Zm (20), (z) Zml (zo‘ ik (Fo—X) for xo> X
Ty 2 0
m=1
satisfies (15) and the condition
q,l’lsxuusu =% Ismusm =0, (22)
Therefore,
E® — g0 4 S(E(m "‘Fl) dx, (23)
Zg=hy
or, considering (13), (18) and (21) for 0 <X < T,
3 < y 3 - ik, . (r—x)
E( V= zlcmlzml (Z)el mi* + Z lezml (z) e ™ ’ (2u )
m= m=1
where /136
Rm\ — . (—~ Ly" LY e sin’(nnE). (25)

2] 0 [T k2
hy lﬂ’('—(\;,l)} P R

155




. +
On the whole, the functions ¢; (x, z; %9, zg) and ¢, (x, z; xg, 2Zg)
allow us to construct any term for the sequence in (7).

II. We can consider the case when the source is located on
a higher waveguide in a similar way (Fig. 3).

Assuming, for the sake of
definiteness, that 0 < a < hg,

Z_ Sa we will find the sequence {E(k)},
oS 5 S as before, by the conditions of
hy of 123 h, (8), (9), (10), etc. However,

S2a ¥ S T in this case, 1t is useful to use

the following function, together
with the already-applied func-
Fig. 3. tion ¢3:

oo

] 2 Z o (2) Z pa (20) ( EPMhnal iy (545 Glhng (x—-x,))

hy Rna
n=1
for x,<x
Py = .
,‘_2 Zs (@) Zun (20) (i (50 _ g (50=)) (26)
hg i kng
n=1

for x<x0’

In the region of x, xg < r, 0 < z, zg < hy it satisfies (15)
and (16).

The approximation of E{!) for x > 0 has the form of (13).
£(2) ig determined by the following relationship:

Iy -
o
E® Doy (x, 2; 0, a) +§'(E(1)T’%;_) dz, (27)
Xo=r
(here D is the normalization factor), or, considering (13) and /13
(26),
E CnaZns (2) em"’x'*" 2 Rn2lny (z) e*tm =
-l n~1
ED _ ’ for 0<x<r
2 CnaZna(2) e m® 4 Z RugZns (2) etm = (28)
-1 n=1
for x<0,
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Cpp — 1D 2 (@)

- hi knﬂ (29)

and
Ry = — ( anelk"zr - Tn‘z) .

We can then find E(3) for 0 = z = hy:

oZo

E‘”:E"’-{-S (Emég) dx,. (31)
Yoo 20':’1‘
Let us assume that ®x = r; then

E® 2 ApiZom (2) eikm1x+ Zl B Zm (2) gm (51 (32)
e

m=1

The coefficients Ay, and Bp; have the form of

A —=C.. — 2zm (— 1)™ \ kpaCna sin (rng)
mi = n R, | — (_’;n_z)‘ ’ (33)
n=1 mi

(34)

. hnd ik o
B, —_Tm (—1)m Cpse Rp»
ml h? k'znl . Tz ~+ 1+ Tt sin (sz).

el kml kmx

determined in a similar way, etc.




ITI. Finally, let us discuss the case when there is a rect-
angular protrusion between two waveguides of different heights.
Having made a mental division of the space inside such a waveguide
by the surfaces S;3, S3;3, So; and S;,, as shown in Figure 4, we
can determine the sequence of {g(Xk)} by the following conditions:

m _ D — 0
E lslsuswusm,—E |smu.s‘mus2ﬂ 0; (35)
2
= B0, = B, = B, —0
E(Zn N, E(2n)| E(2n-1);

21 4-1) __ p@n+)) — (2n4-1) — E(’zn)
E®" lssuus vs,, —E ‘su 0' E lsu
(2n+1) __ pf2n)
FOmDl = B,

where n = 1, 2, 3,...

As before, E(1) is determined by (13). If we now introduce
the function ¢3 as was done for (26) and we assume that r = »r;,
as well as the function ¢,, as was done for (1l4), and we assume

that r = ry, then

Ko~ 1y

h
-1 o
™ o, = Deylx, 2 0, @)+ (B0 58)  da,
0

h

: —1) 0
E(2n) |x>r, = "(E(Qn b _dl;;) dzo,
0 Xo=="y
Ty
ECn) _ g 5‘ (E"""’ ‘;‘:1) dx, + S( FOm 921 0?1) dx,
gy 2y=h, 2e=h,y
0<z<<h

Thus, for example,

E CurZny (2) €™ m* 4 z R Zs (2) &% =)

n=1

for x<0

}-I CrsZnm (2) ehns® 1 Z RunZ,s (z)e"‘ns (i~ x)
for x>0,

E(?) Ix - = Z 2lznl (z) eih'ﬂ (x—r,)




E™ l

Ty X &l

=, }_: ApyaZp (2)e"m* 1
n=1

- - g i 43
-+ E Bnlsznl(z)ehm =g X RusZm (z)eu’" (r: =), ( )
n=l n=-1

The coefficients T 5,7, Rn31s An13» Bpi13 and Rpjp are determined

by (19), (30), (33), (34) and (25), respectively. E% is Ffound
in the same way, etc.

2. Discussion of the Results

Let us begin with case 1. Although we wrote out approximative
£(1) in the form of a series in (13), we actually have a finite
sum for x ¥ 0, because the walls have ideal characteristics. It
follows from the expression in (18) for E(2) that the local "waves
play a significant role in the satisfaction of the boundary condi-
tions of (9), which are fulfilled, as are all the others, in the
corresponding distance function L,. Since the theories in (18)

1"

5=h1/h2
Fig. 5.
~ 2P { — 1) sin (nnE)
Taplaspr = P ) (Ly)

converges, and it is suitable that we consider the case when the
number of propagating normal waves in the lower waveguide is small,
while the heights h; and h, do not differ greatly. /140

Equation (18) allows us to treat the field in the higher wave-
guide as overexcited by the discontinuity. The coefficients Tpo
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imply the coefficients of transmission, and depend naturally on

the phases and amplitudes of the propagating modes in the incident
field, as well as the coefficients of overexcitation of the modes
Tnp-. If 1 < */hy < 2, then the first mode alone propagates in the
lower waveguide, and Tpp,; are determined by the coefficients 1.

The behavior of several of the first coefficients Ty, which depends
on the height ratio of the waveguides, is shown in Figure 5, which
illustrates the tendence to relative equilibrium of the coefficients
of overexcitation with a decrease in the parameter £ = hj/h,.

In order to consider the effect of reflection from the dis~
continyity, we should use the term E 3), It can be seen from (24)
that £(3 represents the field for x £ v as the sum of the in-
cident and reflected fields with coefficients of reflection of Ry,
while each Ry is determined by all the propagated and local modes
of the higher waveguide for x = r and is a complex value.

Further, if we consider the term E(“), it would allow us to
describe the process of passage to the upper waveguide, considering
the reflection from the discontinuity for x = r.

In case II the basic step of E(1) has the same form, while E(2)
describes the reflection from a rectangular projection. We can
see from (28) - (30) that the reflection effect can be interpreted
in this situation as the difference between the field reflected
from an ideal wall at x = v and the field which passed to the upper
waveguide from the lower one from some imaginary source arranged
at z = z, x = 2r.

The approximation of E(3) allows us to describe the effect of
the step on the field in the lower waveguide. Since a < hjp, the
source can be seen from any point in the region x =2 r, and there-
fore the field here is .combined both of a "direct" and "diffracted"
step [see (32) - (34)]. The diffracted field is determined by the
combination of modes which are incident on the step and reflected.

Case TII can be reduced largely to cases I and II. Thus, the
expressions in (41) illustrate the process of reflection from a
protrusion, formula (4#3) shows that the flield in the region below
the protrusion is represented by the sum of the "direct™ field from
the source, the field diffracted on the protrusion for x = r;, and
the field reflected from the end of the protrusion for x = rj.
Finally, (42) characterizes the field in the waveguide behind the
protrusion. However, (41) and (42) do not consider, for example, /iul
the reciprocal effect of waveguides arranged along both sides of
the protrusion. Therefore, for a more complete description of the
phenomenon, we should consider B(“), etc.
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THE PROPAGATION OF LONG RADIO WAVES AND THE
NONHOMOGENEOUS IONOSPHERE

E.M. Gyunninen and I.N. Zabavina

ABSTRACT: The authors discuss the propagation
of long radio waves and the nonhomogeneous iono-
sphere in terms of a model they used in a pre-
vious study. It is shown that the method of
constructing the solution to the problem of

wave propagation with the aid of "rays" for

the earth-ionosphere waveguide channel with
subsequent approximation is valid when the
dependence of the waveguide height on the dis-
tance along the earth's surface is considered.

The problem of the propagation of radio waves in a waveguide /14
channel formed by the spherical surface of the Earth and the non-
homogeneous (in altitude) ionosphere was examined in an earlier
study of ours [1]. Its solution was approximative, in the sense
that we used the impedance of a plane wave incident on a layer of
the ionosphere which was nonuniform in terms of depth. It was
constructed in the form of an expansion by "rays", which allowed
us to consider the dependence of the impedance on the angle of
incidence.

In the case of an isotropic ionosphere and vertically polar-
ized wave, the impedances can be calculated by numerical integra-
tion of the following equation (see [2]):

£, (2) —sin?

Bel2) ik e (2)82 (2) — S22, @
Sm Zp.

dz ’ (1)

where k is the wave number in the air; e](z) is the relative com-
plex permittivity of the ionosphere, depending on a single coor-
dinate z; Y 1s the angle of incidence of the wave on the layer of
the ionosphere, and Equation (1) itself is obtained from the first

equation in (6) in [2] after replacing A;; by E% (the time de-
-iwt
)

pendence of all the values i1s determined by the factor e

As we showed in [1], a similar equation can be obtained for
"spherical'" impedance, and then the solution to this problem be-
comes a strict one. We will compare both sclutions in this article,
and we will attempt to evaluate the accuracy of the approximative
one.
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For the sake of convenience, we will formulate the problem
briefly. Let r», 8, ¢ be spherical coordinates with origin at the
center of the globe of radius a, let a vertical electric dipole
be located at the point » = a, 6 = 0, let the space for a < v < <
be filled with a uniform atmosphere, and for r > c let there be
a nonuniform (in terms of r) isotropic ionosphere whose electrical
propertles are characterized by the relative complex permltthlty
€ (r) We will look for the field of the dipole in air. /143

Let us introduce the single-component electric Hertz vector
hal

T=n - by the following formulas:

- —»

—— rot rot T e me,(r) , (2)

— {
we’ (2

H::HHH,

where j is the current density at the source; e’ (r) = e (r) ey,

€g = 1

0 36w
will impose an impedance boundary condition at the air-earth divi-
sion (r = a), and we will impose precise boundary conditions at
the air- 1onosphere division (r = e¢). The solution constructed for
such assumptions can be written in the following form (for r = a)

(see [1], formulas (79)-(83)):

. 10”? f/m. TFor the vectors of the fields E and ﬁ, we

Im= ) u",
m=0 . (3)
—_ i
om —Jo 1 V2e®
2T ka® Y rsin®

SECON i RIS LN

— y_.__ Fm,t,m—lelvidv
X 7 2 2 . i v e , ( n )
4 t@ | (ke) ¢t (ka) [c”’ ) (k) + 6D | (ka) PP
F Mt = a3 M

where m = 1, 2, 3, ...; Fy and ¢, are the "spherical” coefficients
of reflection for the earth's surface and the lower boundary of
the lonosphere, respectively, expressed by the formulas

:ci‘_)’l (kc)

T .
@ ko) @ (5)
3

@’ 1 (ke) !

V——

2 =~
GO
7




2y ke

z 5
—ay " -~ 0
1@ | (ka)

The first term in (3) characterizes the field for a uniform
atmosphere, and is not written out in an explicit form. The di-
pole current is designated by Jjg, 8§ shows the reduced surface im-

e (1) (2)
pedance of the earth's surface, and “vﬂ%’g_%f“ are '"'spherical"
Bessel functions. The symbol &§,, (c¢) in (5) designates the "spher-

ical" impedance at the air-ionosphere boundary (r = c),

R, (c) (7)

where Ry(r) are radial functions in the expansion of the field in
the ionosphere. They satisfy the following equation:

Ve —

a2R, 1 de, (r) dR, . 3
TdrrT T g;.(r)"%r‘—'77+(k2s"'(r)'— rz R,=0.

If we are interested in the field in the air, then the func-
tion Ry can be disregarded, since it is sufficient to know the
impedance of (7) in this case, for which we can find the following
equation with the aid of (8), as was shown in [1]:

V2 —

4

k2, (r)rs

a, (r)

= — ik e;.<r>83<r>~[1—

It is easy to see that (9) converts into (1) if we assume that

/1l




where h = r - ¢c. Since in our problem h << ¢ always, then the
value of v obtained from (10) coincides with the saddle point of
the integrand from (4), i.e.,

va = kasin ¢, =kcsin ), (.1)

(see Fig. 1).

For the initial condition in integration of (9), we can select
such a value of §,(r;) that the layers of the ionosphere above 1)
have no effect on the field in the air. We can then consider the
ionosphere for r» > r; to be uniform, (8) is degenerated into a
Bessel equation, and, considering the conditions for emission at

r > ® , we find that
L (Y )
2
?

8,(r) = — Vom : 'C('l_).—;- (kVe;n(r,)rl) (12)

(1)

where the prime in the function g, 3 signifies differentiation over /145
the entire argument. However, in practice it is sufficient to
assume the following [27:

1

8,(")=‘—-.,—>' .
l 1/em(r])

(13)

In order to compare the solutions for "plane'" and "spherical”
impedances, we carried out numerical
calculations, the results of which
are discussed below.

Equation (9) was solved by numer-
ical integration on an electronic com-
puter. The permittivity em(r) in the
ionosphere was determined on the basis
of averaged ionospheric profiles for
the electron concentration and number
of electron collisions [2]. We ex-
amined the diurnal and nocturnal iono-
sphere, and the latter was distinguish-
ed by a sharper gradient for the elec-
tron concentration.

Fig. 1.

If we compare the solutions to (1) and (9) for certain fixed
angles of ¢ (y = ke sin 9), then we can hardly expect a great




difference, as can be seen from i u). Actually, this difference
does not exceed 1% in the case ¢ .- the nocturnal ionosphere for
values of ¢y in the range from 17 ) to 1.45 and for frequencies Ffrom
5 to 60 KHz, and it does not esceed 3% in the case of the diurnal

ionosphere (when the wave penetrates more deeply into the iono-
sphere).

The solutions to (9) for real v, which can be associated with
dei.nite angles of incidence on the layer of the ionosphere with
the aid of (11), depend in different ways on the angle of incidence
for the nocturnal and diurnal models of the lonosphere. For low
frequencies (5-15 KHz), this difference is not very substantial,
but at higher frequencies the same change in the angle of incidence
causes a much greater change in the impedance for the diurnal layer
than for the nocturnal one (Fig. 2). A similar dependence is also
maintained for complex v. TFigures 3-6 show graphs of the dependence
of the real and imaginary parts of the "spherical" impedance, as
well as the real and imaginary parts of the integrand of the vari-
able for integration along the contour For the first "ray" (m = 1)
at a distance from the source of 3,000 km.l In this regard, we
are examining frequencies of 5 and 60 KHz for the diurnal and /1486
nocturnal models of the ionosphere. The integration contour con-
sists of two lines emerging from the origin of the coordinates at
angles of--gr-:'-T and %—to the real axis. The integration variable t
is connected to v by the following relationship:

t=(—k"’7);—(v——ka), (14)

since in calculating the diffraction rays of the Bessel function,
they were replaced by asymptotic representations in terms of the
Airy functions [3].

Using the graphs in Figures 3-6, we can assume that the assump-
tions we made in [1] in calculating the diffraction '"rays" ('"plane"
impedance which does not depend on the integration wvariable v) yield
the greatest error for the highest frequencies of this range and the
diurnal conditions for propagation. This is confirmed by the re-
sults of numerical computations presented in the table for '"spheri-
cal" and "plane" impedances.?

Thus, the solution obtained in [1] is found to be completely
satisfactory (at least in the range of 5-60 KHz). Obviously, this
allows us to use the method of constructing the solution with the

1
The integrand of (4) is designated by ¢ in Figures 3-8.

The moduli and arguments of values of Vy which imply the functions
of attenuation for the "rays" are given in the Table (see [11).
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Fig. 2

aid of "rays'" for the earth-ionosphere waveguide channel with sub-
sequent approximation, considering the dependence of the waveguide
height on the distance along the earth's surface.
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MODULUS AND ARGUMENT OF THE ATTENUATION
FUNCTION V,, FOR DISTANCE OF 3,000 KM

Night Day
Impedance Modulus Vy Argument Vy Modulus Vg Argument Vi
5 KHz
m=1 m=1
8y, 0.7853 2.444 0.8353 3.136
Sg 0.7838 2.442 0.83897 3.137
m=2 m=2
Sy 0.8125 3.666 0.968 5.070
8s 0.8121 3.667 0.968 5.075
60 KHz
m=1 m=1
Sy 0.9166 5.682 0.3778 1.213
S§s 0.9152 5.681 0.3280 1.203
m=2 m=2
Sy 1.0941 2.468 0.2135 5.186
8g 1.0962 2.4867 0.2570 5.005
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TAKING ACCOUNT OF THE NONUNIFORMITY Orf THE IONOSPHERE IN
THE PROBLEM OF SUPER-LONG WAVE PROPAGATION IN THE
WAVEGUIDE CHANNEL EARTH-IONOSPHERE

S. T. Rybachek

ABSTRACT: This article is a continuation of a
study on the problem of the field of a vertical
electric dipole in a waveguide whose walls are
formed by the Earth, characterized by finite
conductivity, and a uniform isotropic ionosphere,
expanded for the cases of an ionosphere which

is non-uniform in terms of the radial coordinates.
The difficulties encountered with this problem

are cited, and methods of overcoming them are
suggested.

The problem of the field of a vertical electric dipole in a /152
waveguide whose walls are formed by the Earth, characterized by
finite conductivity, and the uniform isotropic ionosphere was
investigated in [1]. This study is a direct continuation and
generalization of the vresults of [1] for the case of the ionosphere
which is non-uniform in terms of the radial coordinates.

1. We will consider the source of the elctromagnetic field
to be a radial electric dipole which has moment of P, and which is
located on the surface of the Earth at the point r = a, ¢ = 0 (we
will use the spherical system of coordinates (r, ¢, ¢) with origin
at the center of the Earth). We will approximate the Earth, whose
electrical properties are characterized by the reduced surface
impedance §, by a sphere of radius a. The ionosphere, which we
will consider to be an isotropic and nonuniform (in terms of the
radial coordinate r) medium, is arranged at r > c (¢ = a + h, where
h is the height of the waveguide).

As is well known [2], this problem is reduced to a solution
to the wave equation for the Hertz function u:

Po 3r—a)b(d—0)

2 e _
v -kt = 2ns risin® '

(1)

where k2 = k2 at a < r < c;

Py 2 d? 1
k? = Ry "“ka dre "'“—’ku for I">C.
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The boundary conditions have the following appearance:

(1) —(J(.c.—r;l—)— = -ikéru at r = a;

(2) u and %—; are continuous at the boundary » = ¢ (we will assume

that ky and —‘;-— are continuous at r = c). The function u has a
pole of first order at the points where the source is located, and
it should satisfy the conditions for emission to infinity.

The solution to the boundary problem formulated above is con-
structed by standard methods in a way similar to what was done for
the case of a uniform icnosphere, the wave number of which k; did
not depend on the radial coordinate » [1]. Therefore, we will not
reconstruct the solution in this study, but will only present the
final formulas and discuss the difficulties encountered in consider-
ing a non-uniformity in the ionospheric layer.

Expansion by normal waves results in the following type of
solution for the function of attenuation V connected with the
ikas
function u by the relationship u = 23—53— V:

I 2"’
P E e 4
V= sing Fa €

— -
Ve [ c‘v,,).—l 12 (ka) — z;(f’:l 12 (ka)A,m__I,Z] v m—ka)®

y . 1 9
[ )i (ka) + R'c(v,)n—II?(ka)] v 1= A1pB,_1p]

v—vm

) ap k) 5
4 212 (kc) (1)
Ay_1p = ?Ef)‘l’—k—' Rv"—m; Rz = C’"‘;’? (k)
w172 (ke) t®p (ke)

&2 19 (ko)
L o (Ra)
R?—I/Z = c?lm, (ka)
U g (ka)
e o (Ra)

-t

+ i3,

2 + 8
(21 (ka) 0

B, 1 = —g—— ;
=1/ Csl—)1/2 (ka) v—1/2

i3

3 u . . . . .
The values R\)—l/2 and R\)—l/? signify the spherical coefficients

of reflection from the Earth and the ionosphere. The value §,,
which defines the coefficient of reflection from the ionosphere,
has the following form:

f\:—l/z (r

5, — 1 Sy—127)
= T ® e’




where fv satisfies the equation

-1/2

. 2 N V-
foon (M H )=k Nz ey — 7 (f-1 () =0,

in which
4zeN (r) [1 —yef fni’l]

k(r)y=k® (r)=k%|1-
A ) mu ( ) m [w2 -+ V_zan (")]

as well as the condition for emission to infinity.

In calculating the electromagnetic field by the method of nor-
mal waves, the basic diffjiculty is to determine the zeros of the
transcendental equation

(7)

which contains Hankel functions of the first and second type of
arbitrary index and argument, the radial functions f_ _i{(r) and the
derivative of these furctions by the argument. In solVving this
problem, we used numerical methods which permitted us to determine
the zeros of (7) with the requisite accuracy. The method of calcu-
lating Hankel functions and determining the roots of (7) was
expanded in detail in [1]. In this study, we will describe the
method of calculating the radial functions. We should mention that
in calculating the coefficients of reflection from the ionosphere,
which are determined by these radial functions, it was suggested
that we use the experimental dependences of the electron concentra-
tion and the effective number of collisions between electrons and
neutral molecules on tke height. This problem can be solved solely
by numerical methods. However, after integration of (6) we must
carry out numerical differentiation of the function given by tables

<d2 . 1
dr? ky,(r)
tion y by the formula

). This can be avoided if we introduce the new func-

—dg,- (]/?;mf,_ L (r))

(e ;nn)srzfv_ _21_

n

We will then convert from a second-order differential equation for
the function fy_3/2(r) to a first-order differential equation for
the function y{(r), in which there is no term of the type




4= 1
dr? ky(r)

dy VL_%
ar = Cmut (R — — 32
remu (9)
/e'mu
We took the value y = I at the level r = ¢ + hy as the
initial data for (9). This corresponds to a solution to the

differential equation in (6) for the function f,_j/5(r) in a WKB
approximation on the level ¢ + hg. The value hp is selected in such
a way that the layer of the ionosphere located above it does not
affect the values of the function y, and consequently, has no effect
on the values of the "spherical impedance" §,; at the boundary of the
ionosphere, which is connected with y by the following relationship:

i
b=~ 5y r-e

Analytical and numerical investigations of the error in initial
data were prevented in [3] for a similar equation describing the
coefficients of reflection of plane electromagnetic waves from a
plane-layered anisotropic plasma. We carried out analogous numeri-
cal studies for (9), which showed that, in order to calculate the
value of §,; with accuracy up to 0.1% (in the frequency range of
5-60 KHz), we must take a value of hg which does not exceed 20 km.

2. In order to illustrate the dependences of the damping,

which is determined by the value Imv,, and the phase velocity cgp
C Revp

cfm = " ka
as well as that of the modulus and phase of the attenuation function
V on the properties of the ionosphere and the frequency of the
electromagnetic field, we carried out our computations on an
electronic computer.

of the wave mode of number m, determined by the ratio

In order to account for the effect on the field in air of a
highly conductive layer of ground waters, we selected a two-layered
model of the Earth: the upper layer, of thickness 1 = 10 m, had

relative permittivity of e€/eg = 20 and conductivity of o = 107
1/0hm+m; the lower "layer" (sphere of radius a - 1) had e/eg = 25,
g = 51072 1/0hm*m (meter-kilogram-second unit system). ’

The dependence of the electron concentration N[el/cmsj and
Veff L1/sec] on the altitude (starting with the level r = a) of the
ionospheric layer for which the calculations of the coefficients of
reflection from the ionosphere were carried out, is depicted in
Figure 1. The curve for vgeg (dotted) was obtained according to
the Nicolet formula [4], while we used approximations by third-power
polynomials obtained in [B] in calculating the curves of N(r-a) which
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are averaged models of the diurnal and nocturnal layer. Figure 2
shows the dependence of the attenuation of the first normal wave

on the frequency for different manners of calculating the coeffici-
ents of reflection from the ionosphere. Curve 1 corresponds to
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calculations with "point" coefficients of reflection [y was deter- /157
mined by integration of the differential equation in (¥)]. In cal-
culating Curve 2 (which was done in [1]), we used the Fresnel
coefficients of reflection of a plane wave from a plane boundary of

the ionosphere. Finally, in calculating Curve 3, we used coefficients
of reflection from a plane air-ionosphere boundary (this corresponds

to integration of the differential equation for y of the type

V2 —

dy o

' o o
—_— . == 2 4 k.. —-— . }")-
r mu
ree oy

In calculating the coefficients of reflection from the ionosphere
by these methods, the phase velocities obtained for the normal
waves did not differ substantially; therefore, the corresponding

dependences of are not presented in this work.

of the first

The dependences of the damping and the ratio

two modes on the frequency are shown in Figures 3(a) and 3(b) for
the day. The corresponding dependences for the nocturnal condition
of the ionosphere are shown in Figures u4(a) and 4(b).




A consideration of the non-uniformity of the ionosphere in
terms of altitude resulted in a situation where a clearly pro-
nounced minimum (Fig. 3(a)) was observed in the damping of the modes
corresponding to the diurnal state of the ionosphere; the position
of this minimum shifted toward higher frequencies with an increase
in the number of the wave mode. The nocturnal curves for the
damping (Fig. 4a) in the frequency range under investigation did
not have such sharp minima for the selected model of the ionospheric
layer. We could also mention that, in going from day to night, the
curves for attenuation of various normal waves converged. Corres-
pondingly, for frequencies higher than 10-15 KHz, the electromagnetic
field oscillated more during the night than during the day. At
lower frequencies, the field was determined by one mode both during
the day and the night; therefore, the dependence of the field on
the distance and properties of the ionosphere obviously was of a
monotonous nature.

Figures 5(a) and 5(b) show the modulus of the damping function
and supplementary phase of the electromagnetic field ¢gyp for the
first two modes in dependence on the distance (in Fig. 5b the left~-
hand scale corresponds to the solid lines, while the right-hand one
corresponds to the dotted lines). As the frequency increases the
role of the second mode becomes more substantial: if IVl! is greater
than |V2| at low frequencies, then they become comparable at higher
frequencies; then IV2| begins to exceed iVll, and thus the second
mode becomes the principal one.

The dependences of |V| and the supplementary phase of the
electromagnetic field on the distance are shown in Figures 6-13
(for frequencies of 10, 12, 1lu4, 16, 18 and 20 KHz). TFigures 6 and
7 correspond to the diurnal condition of the ionosphere at an
altitude of 64 km, while Figures 8 through 13 correspond to the
nocturnal condition, for altitudes of 85 and 90 km. We will not
discuss the dependences depicted in Figures 6-13 in detail; we will
only mention some of the rules for them. At low frequencies, both
[v] and ¢syp are monotonous functions of the distance. As the
frequency increases, the oscillations in the electromagnetic field
are magnified. A transition from the diurnal to the nocturnal con-~
ditions results in a situation where oscillations in the field arise
at lower frequencies. When the properties of the ionosphere are
kept unchanged, an increase in the height of the waveguide also
causes oscillations in the field at lower frequencies. Thus, if
¢ sup changes almost linearly throughout the entire range under in-
vestigation (3-10,000 km), at a frequency of 14 KHz for an altitude
of 85 km, i.e., if the phase velocity does not depend on the
distance, then the range for a linear change in ¢gyp becomes much
narrower (8-10,000 km) for the same frequency but for an altitude
of 90 km (see Fig. 12).
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In conclusion, we must mention that we have presented numerous /164
graphs, thinking that they might be of independent interest for
those carrying out studies on the propagation of super-10ng waves.
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THE REFLECTION OF A "BELL" PULSE FROM A
SYMMETRICAL EPSTEIN MEDIUM

L.I. Bezruchenko

ABSTRACT: The problem of the reflection of a
"bell" pulse from a symmetrical Epstein medium
is discussed in relation to the use of ground-
based radiophysical methods of obtaining real
profiles for the electron concentration in the
ionosphere. The criteria for formulation of
the problem are cited, and the "spreading" of
a reflected pulse, the displacement of the
maximum of the reflected signal and the fre-
quency modulation of this signal are examined.

In using ground-based radiophysical methods of obtaining real /165
profiles for the electron concentration in the ionosphere, it is
necessary to solve the problem of the reflection of radio-frequency
signals from nonuniform and anisotropic layers. It is a complicat-
ed task to obtain simple formulas controlling the most characteris-
tic physical effects with a striect formulation of the problem.
Therefore, having specified the formulation of the problem, we will
consider that the model of the layer and the shape of the probing
pulse satisfy the following prerequisites:

(1) The pulse has a narrow-band spectrum;

(2) The non-uniformity is "localized" in some layer with a
maximum of electron concentration on the level of z = 03

(3) The transmitter and veceiver are a great distance from the
maximum of the layer;

(4) The distribution of the electron concentration is such
that it can be modeled by an Epstein layer [1];

(5) The medium is isotropic and has no damping (veff = 0).

We will show the mathematical criteria for limitations 2 and
3 below.

In the case when conditions 2, 3 and 4 are fulfilled, we can
characterize the layer under investigation with a graat deal of
accuracy by some coefficient of reflection R (iw) which does not
depend on the coordinates. For a symmetrical Epstein layer, when
the limiting value for the concentration N(z - * =) = 0, R (iw) has
the following form [2]

R(i0)= P (o~ — o) (g + i — 10 71 - 100) (1)

s

T(l — i0Q) T (—;— + ml)r (—12— - zal)

186




where T (z) is a gamma function; Q = 28 (normal incidence of the

c
wave on the layer);

1

d1=—2—1/m,2‘$22N3-—-1. (2)
w2=41:22N3_ (3)
X mc y

is a parameter characterizing the thickness of the Epstein layer;
i

s
N3 is the concentration of the layer at the maximum (z = 0).

A harmonic dependence on time of the type elwt is assumed.
We will be interested in the envelope and microstructure of

the reflected pulse, considering the following as the probing pulse
with "bell-shaped" envelope and high-frequency loading wg:

E(#) == et to- (u)

The spectrum of this pulse has the following form:

1
—jmle-ed _ @ — ¢,
F(iv)=YTe * g oo, (5)

In view of the assumptions we made earlier, the reflected field of
a plane monochromatic wave 1is expressed by the formula

io (¢4 365)
E,qg (i) =Ee R (to). (6)

It is obvious that, for the field of the reflected pulse in (&), we
can Wwrite out the vrelationship in the form of a Fourier integral,
i.e.
Epes(t)= j E__ - (io)F (iv) e™dew
- (7)

or, considering (5) and {(6), we find that

(+%)

E e f(t)»z EoR (iwg) e"”a g im';_ @ (2), (8)
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where
. 1 22
1 R(w) - T'(m_ me)+iw (l + -—)
(D(t) :2_11 thwz)e 4 ¢ d(l). .. (9)

— o0

Let us calculate ¢ (t) on the assumption that the layer is suf-
ficiently "thick" in terms of the wavelength, and that the load fre-
quency wqg is less than the critical one ("reflecting layer") i.e.,
the following conditions are fulfilled:

™ ) N,
a) ks>, ks>, k=—; kk=-ﬁ'{—_§§ (10)
b) oy > 03 (11)
c) |2@—d,|=2| 0,2 — 0,2|>5. (12)

Then, if the conditions in (10) - (12) are fulfilled, an asymptotic
expression is valid for the I' (z)-Ffunctions in (1) when the argu-
ment has high values.

Since the spectrum of the probing pulse is a narrow-band one,
a substantial contribution to (9) in integration is made only by
some region in the neighborhood of the point + iwg. Using the re-
lationship for T (z) in [3], i.e.,

. a—a
InT(z-+a)=InT(2)+alnz — 57— o s (13)

which is valid at |z + al>> 1 and |al<<|z|, we can obtain the fol-

lowing asymptotic expression in the neighborhood of w = wg = & for
. R (iwg).
the ratio R (fwg)’
R(i®) _ . .
In R—G;J——— (mQ)’A — (3R (B— C), (1iy )
where i 1 1 1 1
ReA = — T B T T o — o @ T T@@f (15)
1 1 1.
ImA = o) 8 T — a8 5l (16)
1 1 1
ReC = 4(wK+o)o)2§?+ 4 (og — 0?2 2 (w8)F (17)
~_ 1 [ SOV ST T
ImMC= — s~ T o=@ T 5@} (18)
~ o N ],
ReB—-ln[(%) 1], (lg)
I, B=arc tan2(wktwpl)+arc tan2(wk-wg)R-arc tanmoﬂ-%. (20)
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Having placed (14) under the sign of the integral of (9), we find
that

8o 1

1 ~3 (A2 12 (B-C) -z -4y
D (t) =~ i‘e ! ' s (21)
: , 5

where

and 8y determines the boundaries of the region where the integrand
makes a substantial contribution to (21).

The integral of & (t) can now be calculated with the aid of
the integrals of probability from the complex argument in [4].
However, having replaced the limit in (21) by infinity, we can find
the following for the field of the reflected pulse, with a great
deal of accuracy:

2

E po ()2 R(i0g) " o €7 = F(x) ", (22)
where /168
o (B C)—(t -t (23)
1
P LA (24)

Considering that o2 and D? are complex values, we can obtain the
following expressions after rather simple conversions:

¥ (7) = Rezgi._,='rz(l + 4ReAa292){[1 — £y — 1) —

— (@08 [+ (g A |

2
P()=1mypr = — 41m A et (s —to — %) + (25)
41Im A a2Q2 1 4+ 4 Re A 2202
+26—f— ‘0)(1+4ReAazm T i Asm )Q‘H”

4 Re A o202 \2
+ [‘ + (f?/%w) ](9‘7)2~

where 0= 2Pty _:;ng'::f‘:Q—z “q;

2 a?
VP T FARe Ax20%) - (4 Im A73s2)t »
p=Re(B—C), g=Im(8-C).




Obviously, ¥ (1) and ¢ (t1) contain all the characteristics of the
pulsed effect and describe the envelope of F(r) and the phase 8(7)
in time, respectively. The value Ty characterizes the displacement
of the maximum of the reflected signal relative to the time T-tg.
It follows from (26) that the minimum attenuation of the amplitude
of the reflected signal (for t-tg = Tg) is determined by the value

41m A 02Q2
L) [1—~t0=10]=—12(1+4R3Aa292)I-lﬂ——l—_i_-zm—R—e-TA—az—Qz‘](gq)z. (30)

Having studied (28) and (29), we can draw the following conclusions
concerning some of the physical parameters of the reflected signal.

1. "Spreading" of the reflected pulse. If we determine the
duration of the probing pulse Ati on the level where the envelope
is incident e times, i.e. a?(t-tg)2 = 1, then for tj = 100 usec,

the paramete? B = 2-10% sec™!.
It can be seen form (25) that the curvature of the envelope
for the reflected pulse 1is characterized by the parameter B:
B2 == a2, (31)
Disregarding the values of second order, we find the following ap-

proximating expression for the "spreading'" of the pulse, for "thick"
layers:

o
A= 2 (v ~ 0p)2 (32}
on the condition that wig-wp<wgy or /1t
A~ 2 (33)

(“)(2)
in the case when the load frequency is far from the critical frc-
quency of the layer.

Thus, the magnitude of the anticipated spreading of the reflect-
ed pulse for "thick" layers satisfys the following inequality:

a 1 a

2 A 34
(,,(2, < ~ 2 (("K—‘“’l))2 . ( )

It can be seen from (34), in particular, that the spreading increases
as the load frequency approaches the critical frequency. However,

we should note that the ineguality in (84) is of an asymptotic-na—
ture, connected with the limitations of (10) - (12), and the limit

lgo0




transition wp + wk is forbidden.

2. Displacement of the maximum of the reflected signal. It
can be seen from (25) that the maximum of the reflected signal dis-
places by a value of T determined by (27). It follows from (27)
that

1 1 oy
o g [T — 2 [(3) 1 ] (s5)

In view of the limitation of (12) and (13), the solution is valid

on the condition that w0>E&L. In this regard, it is found that
2
Tp<0 on the whole, and, consequently, the maximum of the reflected
signal arises with some delay relative to the moment of time 1 =
to+2—g'.
3. Frequency modulation of the reflected signal. The expres-
sion in (26) for the phrase ¢(1) contains a term which changes in

time according to the quadratic law.

If we define the load frequency of the reflected signal wq ypef
as the derivative in time of the phase of the reflected signal,
then it is obvious that

D) pe f=® — Ao —21%.4Im Aa?R% (x — ¢, — 1,),

(36)
4 Im A 22Q2 1 4- 4Re A a202 37
A‘”:QTz'“mA“292(1+4Re/1azgz T TmAae )9‘1- (37)

Expression (37) defines the magnitude of the constant shift in load
frequency of the reflected signal in relation to wg, and the
following for thick lavers:

Aw:Q-{?Qq. (38)

If the duration of the reflected pulse t; pof is also defined
on the level where the envelope decreases e times, then

t. — 1
i s =
ef " y(+4Re aargei7 (39)
and
Oopg £ = ©0 =" do -0, npu ':—tO:ti pof (40) /170
where
‘ 1lin A 22Q2 (31)
My = o 2“.

[l -4 ReA 202pV4"
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Thus, the load frequency of the reflected signal wg pef changes
linearly in time, and, since Im A <0 for "thick" layers, wg pef
increases from a value of wg-bw-wy at -ty <7y to a value of
wo-Adwtwy at T-tp>Tg.

The effect of the frequency modulation of the reflected signal
can be explained by the dispersion properties of the reflected layer.

Finally, let us evaluate the order of magnitude of A, 745, Aw
and wg in that case when the reflection originates from a layer of
the ionosphere modeled by the Epstein layer. An analysis of the
experimental data on the profiles of the electron concentration
(5, 6, 7] gives the following characteristic dimensions of the
parameters s for various altitudes:

for the upper branch of the F-layer (h > 250 km), s ~ 90 km,
for the lower branch of the F-layer (120 km <h <250 km), s ~ 30 km,
for the lower branch of the E-layer (80 km <h <120 km), s ~ 5 km.

We can obtain the following criterion for validity of the
limitations imposed earlier from an investigation of the strict
solution for the Epstein layer [2]:

df
R

z

L5 (42)

in

From the point of view of the apparatus of the standard equations,
the significance of the inequality in (42) consists in the great
distance between the reversal point and the observation site.
Evaluations show that, in the range of probing frequencies on the
order of 1 - 3 MHz, the requisite [according to (42)] distance
between the observation site z and the maximum of the layer (z = 0)
is equal to:

For the E-layer, z > 50 km,
For the F-layer, z > 220 km.

Since the maxima of the electron density of the E- and F-layers are
located at altitudes of approximately 120 and 250 km, respectively,
then the condition of "localization of the non-uniformity" is
easily fulfilled in many cases of real N(h) -profiles, all the more
s0 when the gradients of the electron concentration are higher.

Using specific values of s, we can obtain the following values
of the parameters of the reflected pulse of interest to us in the
case of "thick layers" (see the table).

As can be seen from the table, the effects concerning the layers
of the ionosphere discussed before are not arbitrarily great.
However, the values for the frequency modulation wp becomes substan-
tial, and it is interesting, that for frequencies of wg <wy -wp ,
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Parameters |Parameters
of the of fi MHz B
Layer Reflected 1 2 3 4 5 6 7
Pulse
Ao, sec™t || ~7,78-107* | —9,71.107% | —2,86-10~* | —1,19-1075 | —5,92-10~8 | —2,92.10~¢ | —1,49.10 *
S=m55.8 Kx oy, S€CTT 1382163 | —1,95.108 |—1,35.103 |—1,07-108 | —9,16-102 |—840.108 |—8,18.102
75T sect| wSec 1,85-107%| 133-107%) 1,01-107%| 7,77.107*| 584-107*| 412.107*| 250.10
= 8, sec™? 0,599 0,999 0,999 0,999 0,999 1,080 1,000
Ao, sec™! |-177.1073 | —2,2.107* 1 —6,23-10-5 | —2,07-10-8
S=309 k| . secT! 1269108 | —136-105 | —1,01-108 |-9,10.108
45107 seg! | o S€C 9,66-107%| 6,10.-107%| 383.107%| 1,97.107*
=% eC | @ geo? 0,996 0,998 0,999 0,999
dw, sec™! | —242.1073(—2,87.10% | —-770.10~5
=B | o sect 22000 | 12100 | 056162
K == - - —4
373, -1| T SEC 7.51-10 4,40-10 2,34-10
=3,18- 10" 5e¢ 12, sec? 0,997 0,999 0,999
Ao, sec™t | —8,48-1073 1 —4,27.107* | —1,28-10* | —5,33-1075 | —2,64.107% | ~1,42. 105 711107
3=w25i 24 0, sec! 1.80-108 | —9,19.10¢ |—6,34-102 |—500-102 |—4,28.108 |—3,90-100 |—3,76.102
1T 10 ses!| T Sec 8,83-10% 6236.107*| 487.107%| 377.107*| 287.10~*| 2,07-10~*| 1,.32.10~*
=h €] @ sec? | 0998 0,999 1,000 1,000 1,000 1,000 1,000
~
[
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the parameter w, practically does not depend on wy, and consequently,
on Ngtgg, and is directly proportional to the parameter s, which /17
characterizes the gradient of the electron concentration profile.

An experimental observation of the effect of frequency modulac
tion of the reflected signal would give additional information on
the rate of the change in electron concentration with altitude in
the neighborhood of the maximum of the reflecting layer.
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PERTURBATION OF ELECTROMAGNETIC FIELDS BY MOVING BODIES

V.S. Gerasimov and V.N. Krasil'nikov

ABSTRACT: The authors discuss the perturbation
of electromagnetic fields by moving bodies. The
calculations in this article show that, if a
body is extended into an ellipsoid with axis
orthogonal to the field (electric or magnetic),
maintaining a constant volume, then the distur-
bances it undergoes (in correspondence with the
electric or magnetic field) decrease with an in-
crease of this axis.

The motion of bodies in electromagnetic fields causes certain
disturbances whose nature is determined by the physical properties
of the medium and circumstances of the motion. In this report, we
will investigate one particular case which lends easily to mathe-
matical description.

Let a body which has the shape of an ellipsoid move at a
constant velocity through a uniform magnetic field existing in
vacuum Hg. We will assume that the substance of the body is
conductive (o > 0), while its magnetic susceptibility is constant.

The method for the solution is based on a successive examina-
tion of two reference systems with parallel spatial axes: a system
K with coordinates x, vy, 2 (relative to which the body moves) and
a system K' with coordinates 'x, 'y, 'z (in which the body is at
rest).

We will assume that a uniform magnetostatic field ﬁo assigned
in the system K is directed along the 2z axis, i.e.,

- -»>
H0=Hoez (l)

(for the symbolsA ¥y, &, and %, are the basis vectors of the system
Ks g xs €' and e'Z are the basis+vectors of the system K'), while
the rate o¥ movement of the body V is given by the formula

lThe movement through an electrostatic field can also be examined

with the same success.




Using the Lorentz transform for the field in (1), we can find the
vectors ﬁ'o and H'O describing the field in (1) in the system K:

HO—Ho“ +T 0, (3)

ﬁﬁ I (vyfké;»~ U,fke;), (%) /1

where ¢ is the speed of light in vacuum;

the indices || and L signify that we are taking the component of the
corresponding vector as parallel to the velocity of relative move-
ment of the reference systems, or perpepndicular to it [2]; the
field B o is orthogonal to the vectors V and Ho.

Now we must find the electric and magnetic disturbances in the
system K' which are caused by putting in the field of (3)-(4) an
immobile conducting ellipsoid of a magnet. The relevant static
problem has a well-known [3] solution which permits us to express
the unknown potentials ¢' and ¥' in terms of the elliptical integral
of type II. For the sake of brevity in the presentation, we will
limit ourselves to an investigation of the following particular
case.

Let the major semi-axis a of the revolving ellipsoid be
directed along the axis 'x; the origin of the reference system is
in the middle between the foci of the ellipsoid, and the system K'
moves relative to K in such a way that the axis 'x slides along the
axis X at a velocity of ngx' In this case, the field disturbances
arising outside the body are described by the following potentials

[3]:

@ 1 dg
(I) "_'_:(I)o 1-—- oy
dt €+ 2R, (5)
§ CHR; ¢
r fﬂ p—1 3 d§ ]
2 e ) EHR,
r_— ’ E .
e ()
ab* p—
7 ) TFeoR;
sms 3 nnd

where Rg = (£ + b2)YE ¥ a%; &€ is a variable in the ellipsoidal
system of coordinates determined by the equation [3]
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Iy ’ye 22
FriTE e T E (7)

a 1s the major semi-axis; b is the minor semi-axis of the ellipsoid;

®0=‘Eoy=';{_'vxﬁo)’; (8)
Vo = — Hoz =1Hz; (3)
p is the magnetic susceptibility of the body.

By identity conversions (which we will not carry out here), /175
(5) and (6) can be simplified. For example, the following represen-
tation is valid for ¢':

2u u--f N

1
C 7 By 2l
o =apf 1 — zﬂ?af _ {1 :i;) (10)
a-p 7" aTy

where f is one half the interfocal distance;

u:V’q‘+a2=—;—(r;+r’2):

(11)
=+ VT 7172+ VE= 1Py 2

r'y and r'yp are the focal radii of the ellipsoids representing the
coordinate surfaces. The components of the electric field vector
in the system K' are found according to the following formulas:

El—— 32E,f¥x’y
Aryry(ry+ry) {(r; + r;) — 4]2] ! (12)
pi= St )
Aryry [(ry+r) —472)2 " (13)

, . E; 4(r'+r') 1 ry L ro—2f
E,=fFy—Fo| _#ntn) 1, ntr—2
TR [(r,-kr2)2—4f’+ 7 lnr;+r;+2f]+
32E,f ¥y {ry + ry)
Aryry [(r o) — 4527 (14)

where

— 2 -
=a—jr+ ;- Ins=l

Using the Lorentz transforms a second time, it is easy to
determine the components of the electric field in the system K:




. 321Eéf2 (x-~t)vcosh
T AN () [ 2 =417

16YE, /242 sin 28 (r; + r3)
Aryrg [(ry + rg)2 —4/212

E =——._,Ii. 4(r1+r2) +.—%—lnr1+r’_2f]+

E,=

y A |(n+ 2 —4f2 ridrat2f
321Ef2v3 cos2 8 (ry + rg)
Aryry |(ry - r2)? — 4722

where we used the symbols y = vcosf; z = vsinf; T = vxt. At £ » 0,
we find the formula for a sphere.

Let us select some plane which is orthogonal to the trajectory
of movement, for example x = 0, We can select the observation points
on this plane, fixing the values of v and 6, and then find the /17
change in value of the field components at these points in dependence
on the time. These changes are caused by two factors: a turn of the




vector E in space and a decrease in field intensity with the dis-
tance. For example, let us take the points 6 = a/43 v = 1. The
changes of the field in it appear as shown in Figuvre 1.

The process is lengthened in time when the distance v in-
creases. Figure 2 shows the change in E; for v = 1, v = 2 and
v o= o4,

ghe intensity of the field decreases according to a law close
to vT*°.

The electrical polarization of the body by the effect of the
Lorentz force (from the point of view of the observer at rest) is
proportional to V/c. Tha2 magnetic polarization of the body does
not depend on the value of V/c¢, and therefore the magnetic field
disturbances are greater in order of magnitude (in 1ihe Gaussian
unit system) than the electrical values for low velocities. They
can be written out with the aid of formulas similar to (15)-(17),
if pu >> 1:

327H6f3(x—-c) vsinh

R e T AT (18)
by — B2Hor%a S (ry + ra)
YT Al L ra— af2n,r, (19)

_ﬁ d(ritr) 1 ri+ra—2f
= A [(fx+rz)’—4f"+7mr1+r,+2f]_'
167H, /23 sin 20 (ry + rg)
T Al =48

(20)

Formulas (15)-(17) and (18)-(20) permit us *to compare disturb-
ances arising as a result of
motion of ellipsoids with d4if-
ferent interfocal distances and
eccentricities. For example,

we can compare a sphere with
radius equal to the minor semi-
axis b of an ellipsoid to an
ellipsoid for which the major
semiaxis a is equal to 10 b.

E;

e
e Ellipsoid

Let us consider the max-
imum disturbances at the moment
of time T = 0 at 8 = w/4 (Fig. 3)
for the component E,, in de-
pendence on the distance. It

Fig. 3. follows from the formulas ob-
tained that, if a body is ex-
tended into an ellipsoid with axis 2a orthogonal to the field
(electric or magnetic), maintaining a constant volume, then the
disturbances it undergoes (in correspondence with the electric or
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magnetic field) decrease with an increase of the axis 2a. If we
consider that case when the major semi-axis of an ellipse extends
along the field, then the disturbances Iincrease. We should also
mention that, for velocities comparable to the speed of light,
there is an increase in the amplitude of the change in field by a
factor of v2 and "contraction" in time by a factor of y.
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ERRORS IN DETERMINING THE CHARACTERISTICS OF SUPERLONG-WAVE
PROPAGATION BY THE METHOD OF HARMONIC ANALYSIS OF
THE FORMS OF ATMOSPHERICS

V.A. Krivoshein and A.B. Orlov

ABSTKACT: The errors involved in determining
the characteristics of superlong-wave propaga-
tion by the method of harmonic analysis of the
forms of atmospherics are discussed, and meth-
ods of eliminating them are investigated. The
article contains a detailed analysis of the
algorithms for determining the attenuations
and phase velocities with the purpose of find-
ing the sources of possible errors, the speci-
fic characteristics of these errors, and esti-
mates of their magnitude.

The method of studying the rules for propagation of superlong
radio-frequency waves (frequency of 1 - 30 KHz) which is based on
an analysis of the spectral composition of atmospherics 1is well
known. The studies in this field are numerous: among the most
important ones, we should mention [1-5]. However, the authors
of these studies did not make a detailed investigation of the al-
gorithms for determining the attenuations and phase velocities
with the purpose of finding the sources of possible errors, the
specific characteristics of these errors and estimates of their
magnitude. We will attempt to carry out such an investigation
and evaluation in this study. The first section contains a gen-
eralization of the methods and algorithms proposed earlier. The
materials presented in the subsequent sections are partially
based on works [6, 7] which appeared recently, and they apply
statistical methods to the problems cited above.

Section 1. Algorithms for Calculating the Propagation
Characteristics

As i1s well known (see [8, 9], for example), the spectrum of
the vertical component of an electric field E (jw, D) of atmos-
pherics can be described well within the framework of a single-
mode representation of the propagation processes for great dis-
tances D from the source (D > 1000 - 2000 km) and for frequencies
lower than 12 - 13 KHz (depending on the state of the course day-
night and its length). It has the following form:

: ___C(w) - ;
E D) =—2%) _ p—a(0)D+j8(w)D
(Jo, D) /me R, (1)
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where C (jw) is a frequency-dependent Ffactor which does not depend
on the distance and which includes, in particular, the character-
istics of the emission source and the coefficient of excitation

of the wavegulde earth-ionosphere; a(w) is a frequency-dependent
parameter which characterizes the velocity of exponential attenua-
tion of the spectral components of a signal in its propagation
along the course; B(w) is the increase in phase of the spectral
component of the atmospherics in propagation per unit length; a
is the radius of the earth.

The spectrum F (jw, D) of the signal fixed on the oscillo-
graph recorder is connected with the spectrum of the field E
(jw, D) calibrated by the Ffactor k, and can be calculated by a
time oscillogram f£(t, D) by way of a Fourier transformation:

TS
F(jo, D)= kE (jo, D)= { f(z, D)e~idv,) (2)
0

Where Tg is the interval for observation of the signal £f(t, D).
We should mention that (1) and (2) presuppose a selection of the
beginning of time reading t = 0, in examining the dependence of
the field of the atmospherics on time, at the point of the mathe-
matical front propagating at the speed of light c. The supple-

mentary factor e j—%-n is not needed in (1) for such a selection

of the beginning of the time reading.

The algorithms for calculating attenuation a(w) are simplest
(see [4], for example). Using the spectra of two atmospherics
recorded from the same source, which are distances of Dj and Djp
from it (Dy > D3), we can determine a(w):

2
G (v, D;) — G (o, D 10 sin >~
#(o) [2b/ thous . wu] =2 5Z~Dl(w 2)+Dz—D1 tog —pr (3)
sin——
a

Where G (w, D3j) is the modulus of the signal spectrum in decibels
relative to some measurement unit Eg,

G(o, D) =20 log—._._F(i‘l‘;'z_oDi)

while D and a are expressed in thousand kilometers.
A study of the rules for the phase change with distance is

greatly complicated by the ambiguity of the 2 7wl values for the
phase of the signal spectrum:

202




(?l(wr D)=argF(jm, D)+2ﬁl, (L})

where 1 = 0, + 1, + 2 ... In this regard, the problem of an unam-
biguous determination of the phase velocities Vpy (w) can be solved
only by using additional information:

(1) Continuity of the theoretically calculated dependence
Voh=VYph (w) [1, 27 or, which 1s the same, the continuity of the
depengence B = Blw)s

28

(2) The relatively small (compared to 3w D’ wvalue of the
curvature for the dependence arg C (jw) on the frequency and the
continuity of this deperdence (for the phase characteristics of
the atmospherics of the nearest zone, see [10], for their rela-
tively small contribution to ¢, (w, D), see [11], and Ffor the
argument of the coefficient of ‘excitation, (see [9]);

(3) The provisionel value (the requisite precision will be
shown below) of the velccity Vg, for some definite frequency,
which is obtained theoretically or experimentally according to
observations of superlong-wave signals by radio stations.

Considering points 1 and 2, the phase spectrum ¢ {(w, D) can
always be represented in the form of a smooth curve by matching
single parts of the phase characteristic (due to a corresponding
selection of the calculated values of arg F (jw, D) of number 1).
Running ahead [see (18) and (26) in section 3], we should mention
that the rather smooth mnature of ¢ (w, D) can be destroyed, in
principle, as a result of errors in the calculation, which can
complicate the matching operation. As will be shown, the interval

27

for correlation of Awk by frequency is equal to T for these
s

errors. This distorting effect of noises must be considered only
for errors involved in & calculagtion of o¢ which are commensurate
with 73 for example, for o¢ > 3. Naturally, the matching opera-

tion requires rather close adjacent valuyes of the argument wkx and
wk + 1 in calculating the dependence ¢Z(k) = ¢7(wx> D) by points.
Their closeness is determined in practice determined by the fol-

lowing conditions:

wk+l—")kl’l%?‘; DL,

W=

2 d
{wle“(”ul<7”? for czp>%’~

Thus, as a result of the application of the Fourier transform
to f(t, D), we can obtain a set of continuous curves for ¢ 7(w, D)
which was displaced from one another by 27l.




Using the spectral phase characteristics of two synchronous
atmospherics, we can find [1, 2] the parameter of B(w) (for a
corresponding method with a single-point recording of atmospherics,

see [2]):
2, (o Dg) — ¢ (0, Dy) 2nm
Bm (0) = D, — D, +Dz——Dl ’ (5)
where m = £2 - l1 =0, +1, + 2 ...

The parameter B(w), which signifies an additional phase (per
unit length) is connected with the phase velocity by the following
expression:

oy=-—(1 -5},
P ”( Vpr? (6)

An ambiguous calculation of B8(w) results in corresponding ambiguity /181

in determining Vpp. Considering (6) and 1 - $ l<<1, we have the
following: ph
(_‘_/P_h__ ) ~.C (o, Dg) — ¢; (v, Dy) m2nc €73
imo Dy — D, -—(Dz—-Dl)o)'

Therefore, the a priori accuracy of the representation Vph

c

should be much better than 2wc/ (D - D;)w. This imposes a limita-
tion on the maximum value of Dp - D for given accuracy Az of the

a priori value of VPh -1 Thus, for wZ27 = 20 KHz and AaiO.QS-lO“Q,

e

it is necessary that D, - D3 < 6000 km. TFor Dy - Dy > 6000 km, an
unambiguous determination of the phase velocity 1s virtually impos-
sible. This remark also helds for the single-point method of
determining Vph in [2]; in this case, Dy - D; implies the removal
of the receiving point from the source of emission.

Being interested in the physical accuracy of the values ob-
tained for o and B, we should mention that the algorithms in (3)
and (5) presuppose identical properties of paths with lengths of
D; and Dy (this is particularly essential in the case of
Dp - Dy << Dy). Therefore, it is most important for which the
source of emission and the points of the record are located omn
one line (on the arc of the greater circle). When there are more
than two points on the record, (3) and (5) can be replaced by the
formulas of regression analysis, which determines the parameters
o and B best of all (in terms of the minimum of the sum of squares
of deviations).
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Section 2. Statistical Nature of the Problem of Determining
Attenuations and Phase Velocities. Errors Connected
with Calibration of the Apparatus.

The statistical nature of the problem of determining o and B
experimentally is obvious. The discrepancy observed in calcula-
ting o and B by different initial data (different signals, dif-
ferent experimental conditions, etc.) is due, first of all, to
variations in the properties in the propagation path (mainly the
ionosphere) and, secondly, to the different types of errors in
recording and reading the oscillograms of the atmospherics.

An evaluation of the variations and properties of the path
is almost of the same interest as a determination of the average

laws. As a rule, the latter are found by regular averaging. In
this regard, we must emphasize that
A
s W7 (v)and Ble) = Nzﬁl(w) ! (&)

l

which are measured when there are no noises or distortions, signi- /182

fy the average parameters (averaging over different conditions of
the path) only of monochromatic oscillations. A description of
the propagation processes of a pulsed signal is unreliable when

o and B are used. Moreover, a and B, as Ffunctions of the fre-
quency, may not correspond, generally speaking, to any of the
specific real conditions of the path (ionosphere).

When we must describe the processes of propagation of pulsed
broad-band signals under certain average conditions with the aid
of a(w) and B(w), the only correct method of obtaining a and B
is the operation of averaging, not by the set of functions
aj(w), Bij(w) but by the parameters pl = pr (1), pplid, ..., pu(i))
on which they depend: aj(w) = A (uw, pl), B; = (w) = B (w, pj.
The parameters py, P2, ..., PM should be independent, and it is
desirable that they have a definite physical significance. The
problem og determining the explicit form of the functions A(w, p)
and B(w, p) is reduced either to an M-parametric approximation
by the set aj{w), Bs(w), which is satisfactory from the point of
view Qf further usage, or to finding the analytical dependences
A(w, P), B(w, p) by theoretical calculations. The second way
involves a determination of the approximative functional dependence
of the eigen-values of the zero, first and higher normal waves on
such parameters as the altitude of the ionosphere, its effective
conductivity, and the conductivity of the earth; thus we can
immediately separate out the unknown independent parameters pj,

1 . . . . R
Here and in the future, a line over an expression signifies

averaging over a set period.
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Po ... pM with clear physical meaning.

We will assume below that the properties of the path are
independent within the framework of one experiment (group of
measuvements) in recording N pairs of synchronous atmospherics,
and we will give special attention to the errors involved in
recording and reading their oscillograms. Considering the dif-
ferent types of errors, the logarithmic modulus & (w, D) and phase
% (w, D) of the calculated spectrum of the atmospherics can be
written out in the following way:

G (o, D)=G (o, D) 4T+ p (o),

~ (9)

9 (0, D)=¢ (0, D)ot} v(o),
where G (w, D) ana ¢ tw, V) are the spectral characteristics of
the atmospherics when there are no errors (we omitted the index
1l for ¢, since we will be interested in random errors in its
determination); 1 is the error in calibration of the absolute
sensitivity of the recorder in terms of the field; u and v are
the errors due to the superposition of additive atmospheric
noises on the atmospherics, geometric distortions in the oscillo-
graph recording and inaccuracies in reading the shape of the
signal; wt is some addition to the phase of the signal connected
with error in determining the beginning of the time reading t = =
on the oscillogram under investigation.

We must make the following comments regarding the selection
of the beginning of the time reading. As was shown above, the
parameter B(w) in (1) was introduced for the case of selecting a
beginning of the time reading at the point of the mathematical
front, since (8) and (7), which connect B(w) with Vph(w), are
only +then valid. However, the point corresponding to the mathe-
matical front on a real oscillogram actually cannot be shown,
particularly for distances greater than 2-3 thous. km from the
source. Therefore, a precise determination of the absolute value
of Vpp is possible, in principle, only when there is a precision
time-unit system at the two recording points (accuracy no worse

than microsecond units). When there is no such system, the
problem of determining B can be solved, but with accuracy up to
some unknown term AR = wt [see (5), (8) and (9)], where T =

1 2 (T2i - T1i)

= ., . Correspondingly, the phase velocities Vph

can be obtained for different frequencies with accuracy up to
some constant

A(%?E' }:c{
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When the experiment is carried out on fixed courses (constant
value of Dy - D;) and there is a substantial distance from the
emission source, the beginning of the time reading must be selected
in identical zero transitions of two synchronous atmospherics.
Identity of the zero transitions can be established at Dy - D7 < 2-3
thous. km. We will not discuss the corresponding method in
detail in this work. Ve will only mention that a selection of
zero transitions at the beginning part of the atmospherics is
experient, since the ionospheric reflections caused by their
formation are more stable for variations in properties of the
ionosphere than are reflections of high numbers, which form the
middle and tail parts of signal. The velocities of propagation
of the "prime" zero transitions, as certain characteristic points
of the signal, can be calculated theoretically by synthesis of
the forms of the atmospherics [12]. We should expect that these
velocities are determined largely by the properties of the Earth's
surface (finite conductivity and sphericity). Therefore, a
theoretical diagnosis is most precise in this case. The method /184

proposed 1is expedient even in the case when there is no informa-
tion on the value for the velocity of propagation of the selected
characteristic point on the signal. The relative stability in
velocity of propagation of the initial zero transitions then aids
in making the best comparison between results obtained under dif-
ferent conditions of the ionosphere, and thereby in evaluating
the effect of its variations on the phase characteristics of pro-
pagation.

The existence of an error in calibration of the sensitivity
of the apparatus [determination of the factor k, see (2)] results
in the arisal of some constant unknown term Ao, with accuracy
up to which the dependence a(w) is determined, i.e.,

m, — I
Ag=e Ti—=Tl
*=D,—D, -

It follows from the formulas given above for determining AR,

v .
A( ph _ l) and Ao that the effect of errors in calibration of I
c

and determination of the beginning of the time reading v is most
substantial for small Dy - Dj. An evaluation of the_accuracy _
(reliability interval) for the calculated values of o, B8, and Vph
does not cause any difficulties when there are definite standards
for deviations in I and =.

We can have a very good idea of the accuracy in determina-
tions of alw) and B(w) only after having examined the errors in
u(w) and v{(w) of the calculated spectra of the atmospherics.

A study of the statistical characteristics of these spectra is
carried out in the following section.
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Section 3. Statistical Characteristics of the Spectra of
Pulsed Signals Recorded Against a Noise Background.

Having examined the errors which occur in calculating the
spectra of pulsed signals, let us use the following two models
for their arisal. The first will be connected with the existence
of additive noise which is independent of the signal and station-
ary during one session of observations. This noise will describe
the atmospheric noises against the background of which the atmos-
pherics are recorded, as well as errors in taking the data from
the oscillogram. In order to describe these errors, the proposed
model is an idealization, since actually the "noise" of taking
data depends on the shape of the signal (the dispersion of the
noise should increase where the curvature of the signal increases).
The second model will describe specific distortions arising in
the oscillograph recording (error in plotting the zero line and
misalignment of the plates of the electron-beam tube in the oscil- /185
lograph).

Let us turn to an analysis of the errors of the first type.
For this, we will examine a group of signals f(t) which are the
sum of the time function of the signal shape fp(t) and the selec-
tive realization £(t) of a stationary random process with average
zero value and autocorrelation function Bg(t) determined as
Bg(T)=€(t) E(t + T). TFor the sake of convenience in mathematical
analysis, we will take a symmetric time interval in calculating the
spectrum of the signal, i.e., one describing a signal distorted
by noise, and the function £(t) = Ffo(t) + (t) given for the inter-
val ( -T, T), and we will take the following [similar to (2)71:

T
F(jo)= { f(t)e~/utdt =X (0) +/V (o). (10)
-7

The complex function is represented in the form of the sum of the
real and imaginary parts, and it is very convenient in evaluating

its statistical properties that X and Y not be correlated. As
can be shown, there is no correlation between X and Y when the
symmetric time interval (-T, T) in (10) is selected. For any

unsymmetric interval of the same length 2T, the relative correla-
tion coefficient for X and Y is, generally speaking, non-zero.
This is an opportune moment to mention that a specific selection
of the time interval is not fundamental from the point of view of
calculating the signal spectrum. Actually, the modulus of the
spectrum IF(jw)] is invariant for the beginning of the time read-
ing, while the phase acquires the determined supplement wT in its
transfer.

Let us find the dispersions of X and Y, for which we will use
the expressions of the autocorrelation functions presented in

[6]:
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27

B(oy o= (27— B()cososs 55D e+

2T

’ — < . sinwg (2T — 1)
+a‘ (27 — %) B, () cos Awe 2 2T=3) 4,

2T

B, (o, o,) ==Oj' (2T —=) B, (=) cos o x %ﬂ_d _

- - sin o (27 —
—Oj (27— ) B,(2) cos du 02T =) 4,

where Aw = |w2—w1| H We = w2+ml . Assuming that Aw = 0, we can
2

find the dispersions of the values X and Y from (11) and (12):

(U]

27
at = 5 (2T — =) B, (= )COQm’d'-‘—-—yB (7) sin o (2T — <) dx; (13)

:r 2T
62,._—_j (2T—:)BE'(~.)c05md—.—-%-j B, (=) sinw (2T - r) d-=.
0

(14)

0"

We will .. interested in the cases when GXQ GYQ. Let wus
establish which limitations result in this approx1mat1ve equality.
For this, we will take the autocorrelation function in the simplest
form BE(t)=B(0)e-|t|, which is frequently requivred in describing

T

real processes, and we will calculate the first and second terms
in (13) and (1u4):

2r k3
S B(©)e "« (2T —)coswdt= —?—‘%;{,‘T%T X

27
X [l "'l“_;””f‘('he x +'{z)] )
er <

1 o Y e B(0) 7
—“’—53(0)8 x sinw (27T T)d‘—m(l-{-m“’tix

2r 2T

Lsngorly 4-ve

—cos 20T (“’"‘x e X e
where |vi] < 1.

If T
27 o <xand € T ot L1,




then the ratlio between the second term and the first does not
1l + wtk

w * 2T
actually more than one period of analyzed frequency is included
in the interval 2T, and when, consequently, this ratio is much
less than unity, we can find the following, omitting the second
terms in (13) and (14&):

exceed Subsequently, considering only those cases when

oi:c%,::c?. (16)

Let us establish the relation between the value o¢2 and the spec-
tral intensity of the noise N (w):

2T
a? (o) = S (2T — =) B, (z) cos wrdr ==

Q
2T

=2T [ B, (x)cos wtdr == 2TrN (v).
;

The functions By and B, can be calculated only for some /18
specific vrepresentation of %he function BE(T). Let us evaluate
the correlation interval for X and Y in the simplest case, assum-
ing that the noise is delta-correlated (Bg(T)=6(O—T), "white"

noise). Using this assumption, the correlation coefficient
chXQ ls
BXX BXX sin 27 Aw ( )
N — 1439 ~ 1433 ~ - . 17
Px.x, 5%,9X, qg( (@) 2TAw

In obtaining (17), we also assumed that oyxjoxs ox2(wce) and
1/2Twe<<l. A result similar to (17) can be obtained for pyjysp-
Thus, the real and imaginary parts of this spectrum are actually
not correlated for frequencies of w3 and ws, when the following
condition is fulfilled:

Jow; — wg

Ap = —. 3 >-;7:- (18)

Let us find the form of the common distribution of X and Y.
In that case when £(t) has a normal distribution, X and Y are

also distributed normally. In the case of other types of dis-
tributions of £(t) the distribution of X and Y is of an
asymptotically normal nature (relative to 2T). Assuming that the

distribution of X and Y is normal, and considering the lack of
correlation between them, we find the following expression for the
probability density of common distribution:
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P (X, V)= (3o ) exp {— g (X — Ko (Y — Vo]

(19)
where Xp and Yy are the values for the absence of noise.

Thus, the problem of the spectrum of the function representing
the sum of the signal and some noise can be reduced to the famous
problem of the statistical characteristics of the amplitude and
phase of a two-dimensional normally distributed vector [7]1. We will
find the characteristics of interest to us by the method of numeri-
cal integration, which is more convenient for solving the formulat-
ed problem. In order to signify the modulus and phase of the spec-
trum (10), we will introduce the functions A(w) and ¢{(w), respec-
tively, which characterize the signal and, in the case of absence
of noise, are written out in the form of Ap(w) and ¢p(w). Turning
to the distribution Ffunction of (19) in polar coordinates, we can
calculate some important statistical characteristics. Let us find
the average value for the modulus of the spectrum A:

S F L (A ey -
A=jAp(A)dA=75 pe T\") (ﬁ_)e T i
i b
We will use the symbol a/Aj = n, which signifies the noisesignal
ratio, and we will finally obtain the following:

»

i, T g ok
A=a,| 4 e () e Mdg= Al 4gi(n)].

n= n

(20)

D%

The function gi(n) = A‘iﬁéo describes the relative deviation of the

average value for the amplitude of the spectral components from its
value when there is no noise. The function gj;(n) obtained by num-
erical integration of (20) is shown in Figure 1. TFor a small values

-

2
of n, the function g (n) = no.
We should not that, since l(ngi 0,
the existence of noise always in-

gm A-A creases the average value for the
ok 9 Ag amplitudes of the spectral compo-
Ga nents.
sk 972,

As is easy to find, A2 = A%
zy + 2062; therefore, the dispersion
s of the amplitude of the spectral
ash component 1Is equal to
gzt W e —

0.’01 01 A ' Il Il s 3;1 =A2~_— A= Ag [2n2_ 2g1/<
76z G5 1 2 5 107 X (n) — g2 (n)] = Ag2 (n). (21)

Fig. 1




The function gs(n) is shown in Figure 1.

For low values of n, we can represent A = V/XZ + Y2 in the
form of part of a series by deviations X - Xg and ¥ - Y4 and, limit-
ing ourselves to the quadratic terms, we can find the approximative
value for the correltion between A(w;y) and A(w,) for low noise-
signal ratios:

BA‘A, = A (0,) A (05) — A (@,)- A (05) =
cif%zagzﬂ;§~[xggﬁ)xgo%)BX@%,mg4-nﬂw0y3@%)3y@%,m9L {22)

It follows from (22) that, in the case of low delta-correlated noise,
the correlation interval for A(wi) and A(ws) is also determined by
(18).

In order to determine o, it is of interest to calculate the
average value for the logarithm of the modulus of the spectrum and
to evaluate its dispersion. A consideration of the non-linear na-
ture of the logarithm operations is very important in examining
average values. Let us calculate 1lnA, expressing (19) in terms of /189
polar coordinates:

b 1 ,p—Ap2 pA,
~5( pA —
:%T59h1pe 7 (%) Q(;f)e dp.

InA-

I

In order to obtain the displacement relative to 1lnAp, we will make
the following transformations:

-~

e oy T o -
nA=——.~‘§PIH7’f—e AN h(%)e * dp -

0
pA, (23)

Let us examine the second term in (23), representing it in the form
of:
1% !

InAge ™ 5 qe B q'Io (—Z—) dq.

0

1

S 2
In this expression, the integral is equal to e2n (see [13]). Comn-
sidering this, we will again write out (23) in the following form:
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rgl —

e P -+ ()
lnA_lnAo=n—25qlnqe "o
0

-4
=Lnd-LnA, X 1y (.Z—’)e " dqg . gs(n). (24)

Gy=UnA-lnAs
The result of a calculation of gg
(n) is shown in Figure 2. We should
note that InA - 1nAgp is always
greater than zero.

Let us turn to a calculation
of the dispersion of lnA:

ain = (In A)2 — (In A)%

Using methods similar to those ap-
pPlied in calculating 1lnA, we find the following expression for the
unknown dispersion:

= £1(), (28)

where

g (n) = %Bq (Ing)’e T, <%)e_"i'dq - gs(n)] .

The graph depicted in Figure 2 was constructed according to the re-

sults of a numerical calculation of the integral in (25). We should
mention that the dispersion o2_ increases when the noise-signal ra-

tio is increased, and it tends towards an asymptotic value (see [71])
ci = g&(w) = w2/24,

It is interesting to compare different averaging methods and /190
their effectiveness. Figure 2 illustrates the behavior of the dif-
ferences A - 1lnAg = 1n[l + gi1(n)] and InA - 1InAg = g3(n) in depen-
dence on n. It can be seen that any averaging method yields values
which exceed 1lnAg; however, iIn the case of averaging 1lnA the accur-
acy in obtaining the modulus of the spectrum is found to be some-
what better, particularly for n < 0.5. This circumstance must al-
ways be taken into account in calculating the average values in that
case when the moduli of the spectra should change potentially in a
broad range with a change in the frequency. The parts of the modu-
lus of the signal spectrum with relatively little significance (re-
lative to the maximum of the modulus) "float" in obtaining the aver-
age value. Therefore, the observer cannot obtain a precise modulus




of the signal spectrum fy(t) for any volume of the initial sample,
in principle. The results can be corrected somewhat by considering
the magnitude of this "floating". This is done more simply in the
case of calculating InA. Then, having obtained o3, from a prelimi-
nary statistical analysis, we can calculate n from (25) and further
determine the unknown correction for "floating" according to (2u).
The "floating" of A in relation to Ap can also be calculated with
the aid of (20) and (21).

Let us examine the phase of
the spectrum defined as ¢(w) = arg
F(jw). The average value of the
6?0U phase is not shifted, i.e., ¢(w) =
F $p{w), which is substantial in de-
termining Vpp. The dispersion of
the phase is found in [7], while
its dependence on the noise-signal
ratio 1s shown in Figure 3. TFor
low values of n, this dependence
is expressed approximatively by
the formula o, = n. Let us find
the approximate value for the cor-
relation of spectral components of
different frequencies for low n.
For this, we will expand the ex-
pression for the phase into a ser-
ies by deviations AX = X - X and

AY = ¥ - Yp, limiting ourselves to
Fig. 3 the quadratic terms (in this regard
we will not consider Xg(wi) = Apji

and Yg(wi) = 0, which does not de-
preciate the generality in the case when conditions resulting in
(16) are fulfilled:

o - Yo . L A .
P, amtanXT-wAmAYr—A&Akah

Y2 i i .
Py = arC tan p- X —AY, — — AV, AN, (26) /191
Xa A02 A:‘)Q
U BV(“’D wg) BX(“’I' 0g) By(ml, o)
By (01, 0p) = @0, == Ao A AZ A2,
o1

Let us consider the second model of noise, which describes the
specific distortions in shapes 6f the signal when the narrow line
is drawn incorrectly--with a pedestal and slope. The pedestal shows
up when the symmetric time interval is selected only on the real
part of the signal spectrum. The term added to the signal spectrum
is given by the following formula:

@X)=h ( cosot dt = ZsinoT,

Le—y
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where h is the magnitude of the pedestal.

In the case of inclination of the zero line, only the imaginary
part of the signal spectrum changes:

T
(A¥),=k [ tsinut dt=25 (sinaT — T cosuT),

where k is the tangent of the angle of inclination of the zero line.
In correspondence with the assumption that wT>>1l, the approximate
value of (AY), can be determined according to the following formula:

(AY) = T —cos ol = ﬂ'—-cosw?‘

where 2h signifies the span of the misalignment. Assuming that the
value h 1s distributed normally with the average zero line and dis-
persion ¢2, we find that tAX) and (AY)p are also distributed nor-
mally witR average value equal to zero, and

2

2 4oy, 43
AX)pzzﬁsm?mT, (AY);=;£COS%»T. (27)

Since distortions of the pedestal and slope type have duration equal
to that of the signal 2T, which is a random value, we can also carry
out areraging by T in evaluating the dispersions in (AX)2Z and (AY)%,
on the assumption that the distribution is uniform. Then we final-
ly obtain the following:

2 25
z- w??

@X? =@AN

and, due to the presence of errors of the pedestal and misaligment
type, all we said above for the case of additive noise £(t) will
hold, while the value 02 signifies only 202/w We should note that
complete averaging of sinuT and coswT iIn (27) is possible only for /192
frequencies which satisfy the condition wAT>>w, where AT is the in-
terval of uniformly distributed deviations and duration of the sig-
nals. Thus, for AT = 100 psec, we will have f > 5 KHz. For lower
frequencies, we must use (27) directly, whereas, since the disper-
sions in the real and imaginary parts are not equal, generally speak-
ing, there can be a shift in the average value for the phase. Hav-
ing considered the most disadvantageous case, where (AX)3 = 4gZ/w?

(or (AY)3 = uo2/m2) and ¢g = ﬁ, we can obtain the following approx1—
mating expre581on, using an expansion similar to (26):
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h
2 - 2
where n® =73 /QO'

Figures 4 and 5 serve as illustration of the materials in this/193
section. Figure L4 depicts the modulus of a specific theoretical
spectrum of atmospherics at a distance of 5 thous. km [14] on the
assumption that lC(jw)| = 1 (Curve 1) and the results of its distor-
tions by noises of two types (Curves 2 and 3). The first noise is
white, comprising 10%(-20 db) of the spectral intensity of this
signal at a frequency of 10 KHz (Curve 4)2, while the second corre-
sponds to atmospheric noise, the spectral intensity of which was
taken from [15], and is alsc -20db in relation to the signal at a
frequency of 10 KHz (Curve 5). TFigure 5 shows the dispersion of the
spectral phase of the atmospherics under the conditions of Figure 4.

G,s,db

~-10t+

—20 -

2 0
We can obtain from the experimental data an approximating expres-

sion which connects the ratio between the root-mean-square value of
the noise and the amplitude of the atmospherics Apax with the value
n for a frequency of 10 KHz. Thus, in the case of B(1) = B(0)e ~ T}
and for values of the parameters of 2T = 4+10"% sec, Tk = 5:10-°

sec, it is found that nly uy, = v B(O)/A___ -
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;AUnosphexic noise

White noise

4, Evaluating the Possible Accuracy in Determing the
Parameters o and 8. ITlustrative Examples.

Fnowing the requisite statistical characteristics of the spec-
tra of the analyzed signals, we can now evaluate the accuracy in
determining the propagation characteristics a(w) and B(w) according
To them.

being interested Zn the average values of a(w), we find the
following, using (3), (9) and (24) and considering the errors in
w1 and ppy at the first and second observations sites as not
correlated:

= 20 lug e
¢ ntp,op (89 —g), (28)

where ag 1Is the "real" attenuation determined by (3) in the case of
gy = uwo = 0, while ggl) and gg2) are the values of the function
g3(n) at the first and second sites respectively.

Further, let us analyze two cases. The first will correspond
to a consideration solely of atmospheric noises, which we will
assume to be identical at both recording points for the atmospherics
(Zurve 3 on Fig. 6). The second case will illustrate a considera-
tion of the "noises" of the sample of data, the spectral distribu-
tion of which will be uniform in a certain freguency band (levels 4
and 5 on Fig. €),. Curves 1 and 2 correspond to the spectrum of the
signal at distances of D; = 2 thous. km and Dp = 5 thous. km from
the source. These curves, just as the curves in Figures 5 and 4,
are calculated on the basis of the theoretical data in [14] on the
assumption that |C(jw)| = 1.
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In order to make the calcu-
lations more specific, we will con-
sider the level of atmospheric
noise at a frequency of 10 KHz to
be equal to 10% of the signal level
at a further point, while the level
>f "noise" 'in the sample of data
at the same frequency 1is equal to
5% of the signal level at each
point. This level corresponds to
5% accuracy in analyzing the time
oscillograms of atmospherics (in
percentages of the maximum ampli-
tudes) for distances of 2-5 thous.
km. with a time for correlation of
the "noise" of the data on the
order of 50 sec. We can find the
noise-signal ratio n = o(w)/Ao(uw)
for all the cases of interest to
us with the aid of Figure 6.

Figure 7 shows the curves of
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ag(w) for the "real" dependence of attenuation on frequency [14]
and the dependence o(w) obtained according to (28) for cases where
the distorting effect of atmospheric noises (Curve 1) and "noises"
of the sample of data (Curve 2) are considered. Moreover, Figure 7
g8lso shows the dependence a(w) according to the experimental data
of [4#]1 (in this experiment, Dy ~ 1.5 and Dy ~5 thous. km).
Naturally, Curves 1 and 2 represent a somewhat artificial situation,
a~d less distorting effects of noises can be observed in practice.
H rever, even despite its illustrative nature, the example cited

iicates that there must be a very careful statistical approach to
tie data on attenuations of o formerly obtained according to (3),
in order to discuss the objectivity and reality of the results
obtained.

A qualitative evaluation of the closeness of the dependences
of a(w) obtained to some real ag(w) can be carried out on the basis
of an investigation of the standards for deviation in a(w):

. wlog e, rs——p—nr -
s [y = 1) l/ “na, T %ma, -

Thus, if the derivative of 04(Dp-D1) is on the order of 6 db (see /196

the expression for o, on p. 212, the result of a{w) actually has no
physical significance. For smaller values of 064(D2 - Di1) on the
basis of the recommendations made in the preceding sections.

Figure 8 shows the dependence

db gg = ug(w). The symbols and the
Q"HEEETEE initial conditions are the same

here as for Figures 6 and 7.

It follows from the preceding
section that the algorithm for
calculating R(w) gives an unchanged
estimate of B(w), except for the
very lowest freguencies (see p.
215). The average quadratic devi-
ation of B(w) is determined by the
following formula:

B s 2
3~_DV‘D115a+4%

A sharp increase in the dispersion for frequencies lower than
4-5 KHz (see Fig. 5) should be taken into account in carrying out
the matching operating (Section 1) and in evaluating the significance
of the results obtained for B(w) and Vph(w).

In conclusion, we should mention that, together with the
method of determining the attenuations (and phase velocities) accord-
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ing to calculated spectral characteristics of atmospheric waves,
there are also widely-used methods based on direct apparatus changes
in the spectral characteristics of atmospherics. Studies of the
errors in such methods have much in common with the problems ex-
amined above, and the authors suggest they be completed in the
nearest future.

The authors consider it their privilege to express their
appreciation to G. I, Makarov and V. V. Novikov for their constant
attention and useful advice in discussing this work.
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EXPERIMENTAL STUDY OF THE DIPOLE AND CURRENT MOMENTé OF
LIGHTNING DISCHARGES

Yu.V. Shtennikov

Part I. Methods of Studying a Dipole Model of
Emission Sources

ABSTRACT: Two methods of studying the dipole
and current moments of lightning discharges
are described in this study. It is shown that
the method of direct recording with the aid

of filters has definite advantages, particu-
larly for short-period signals.

Introduction /19

This work discusses studies of lightning discharge as a source
of electromagnetic waves. In 1926, P. Lejey [1] first suggested
that lightning be examined as an emitter of electromagnetic waves
in the form of a vertical electric dipole. This model was used
in a number of studies [2,3] in order tc determine the parameters
of an equivalent source according to an electric and magnetic
field; however, there was no attempt at testing the correctness
of this model. This work is an attempt at filling in the gaps
in studies of lightning discharges.

We used the model of a vertical point dipole for lightning
discharge in our study. It can be shown that any complex emitter
of electromagnetic waves can be replaced by the equivalent dipole
which produces the same field as the original source at a given
point. However, if the original emitter is not a dipole in terms
of its physical nature, then the equivalent dipole must be ascrib-
ed a dipole moment whose dorm depends on the distance to the ob-
servation point. Thus, the nature of the emission source can be
determined by examining the structure of its electromagnetic field.

By analyzing oscillograms of synchronous atmospherics, we
succeeded in showing the correctness of the dipole model for the
principal discharges of lightning at a distance greater than 30 km
from the discharge, within the limits of experimental errors,
which were 16%. The possibility of representing such an extensive
emitter in the form of a vertical dipole can be explained by the
fact that the emission of branched horizontal segments of lightning
is just as ineffective as the emission of a horizontal dipole for
observation points located on the ground.

We will be making a comparative analysis of two methods for
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measuring and calculating the dipole and current moments of dis-
charges in relation to their precision and interference resistance, /1
and we will present the preliminary results of the experiment. -_
In the second part of the article, we intend to present the re-

sults of experimental measurements of the dipole and current mom-

ents of different types of discharges. This article contains
materials which are part of a dissertation written by the author

under the direction of G.I., Makarov.

Section 1. Methods of Reconstructing the Dipole
Moments of Emission Sources

For the field of a vertical electric dipole located on the
ground, we can write out an equation which connects the vertical
components of the electrical field Ey(t) with the dipole moment
of the source P(t) in the following way:

E, () = — s= [P" ()4 2P’ (t) -+ a2P (1)), (1)

where u = um-10-7 H/m; o = H = 8.10° km/sec; r is the distance

to the emitter. The solution to this equation can be written in
the form of a convolution, i.e.,

P(t) =

“r2egc ‘ 3T . a}3 (2)
3 §Ez(t—t)e -sin —5—d.

In order to determine the dipole moment, we can use two methods
(two plans) according to (2).

1. The method of numerical calculations of the dipole moment.
For this, the oscillograms of the electric field E,(t) obtained
in the recording are tabulated, and the integral of (2) is cal-
culated on a digital computer by numerical methods.

2. The method of direct recording, which immediately yields
an oscillogram of the dipole moment, by the insertion of special
filters between the antenna and the recorder; the arrangement of
these filters is determined by the distance to the source.

Let us examine these methods in more detail. In using the
first method (Fig. la), *he signal from antenna 1 enters the input
device 2 which is intended for separating the signals of lightning
discharges from against the background of industrial interference
and interference from radio stations. Its coefficient of trans-
mission is close to unity in the frequency band AF occupied by
the signals of the lightning discharges, and decreases sharply
outside of it. On the screen of the oscillograph 3 which is in-




stalled behind the input device 2, we find the oscillogram of the
vertical components of the electric field Ey(t), which we tabulated
and introduced to the digital computer 5 in order to calculate the
dipole moment P(t) according to (2).

-y

b
T, 2 3 4 5 T

7 L R L

L P(t) °fYY¥£:tr§ -y
— . R
] s I
b Fig. 2.
I’ _f /7 s/
- ’ ! L~ P(t) Let us c?nsider th? scheme
of the operation according to.

the second method (Fig. 1b). It
differs from the scheme in Figure
1{a) in that the signal goes from
the output of the input device

2 to the filter 3 with impulse
characteristics of the type - -

af

(3)

hO="%e 7 sinkFat,

where o = c/r.

The filter carries out the operation which was done by the
digital computer in the first scheme (Fig. la), and the parameters
of this filter are determined only by the distance to the source
of emission. The voltage Up (t) at the output of filter 3 is pro-
portional to the dipole’ moment P(t) only in that case when the
distance over which the signal has came corresponds to the distance
by which the filter was tuned. When there is detuning, the sighal
Up(t) must be subjected to an additional analysis with the dlgltal
computer 5 in order to eliminate the effect of the detuning, as is
shown in Figure 1(b).

We should mention that, as is easy tov show, the filter with
pulse characteristics described by (3) can be made in the form
of a successive oscillational contour (Fig. 2a). Its parameters
are connected with the parameters of the filter in the following
way :

l A3
“=ygE == at Q= =1

L
R
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0= (4)

The transmission coeffizient of this filter can be written out in
the following way:

o2 (5)
Ky Prpapta?

It is obvious that we can thus have a filter which reconstructs
the current moment of the source, i.e.,

1@¢y=2. (6)

It also has the form of an ordered oscillational contour, and only
the output voltage is taken from the active element (Fig. 2b), while
the relationships between the parameters remain the same.

Let us compare these methods from the point of view of accuracy
in the final results and convenience in using them. It is difficult
to carry out such an analysis in the general case without specify-
ing the frequency properties of the receiving circuit, the signals
under investigation and the interference.

The spectral properties of the signal from lightning discharges
are characterized by the curves on Figure 3a. The maxima of spec-
tral density are found at a frequency of 4-8 KHz for the principal
discharges (Curves 1 and 2 on Fig. 3a) and at a frequency of 12-15
KHz for leader discharges (Curves 3 on Fig. 3a), which are recorded
in the wave zone at a distance of 50-100 km from the source.

Let us examine the properties of interference which can affect
the results of our calculations and measurements. The interference
can be divided into external and internal types. In relation to
external interference imposed on an antenna, both of the methods
under investigation are equivalent, and the only difference is
found in relation to internal supplementary errors which can arise
in analyzing the oscillograms. They can be divided into random
errors, connected with the finite accuracy in reading, and system-
atic ones, obtained, for example, as a result of an incorrect
plotting of tlie zero line on the oscillogram. These errors are
equivalent in their effect to the inclusion of some internal inter-
ference. We should mention that this interference will also play
a major role in view of the fact that the signals examined in this
study greatly exceed the level of atmospheric noise interference.
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Let us describe the spectral properties of internal noises.
Random errors arising because of the finite thickness of the line
on the oscillogram result in supplementary interference of the
random type for a discrete selection of the reading points; we
will call this type of interference the noise of sampling of the
data. This noise can have a uniform spectrum in the transmission
end of the input device (Curve 4 on Fig. 3b). Systematic errors,
or a distortion of the zero line on the oscillogram in the form
of a jump or sag, have a spectrum with maximum spectral density
at zero frequency. The spectra of interference of these types are
shown in Figure 3b (Curve 5 for the jump and Curve 6 for the sag).

\
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Fig. 3.

The dipole moments P(t) can be reduced according to the elec-
trical field with any of the methods examined above, for the equiv-
alent operation of linear filtration by an upper-frequency filter

with 1limit frequency of fg = 22?' The frequency characteristics

of the receiving circuit are shown in Figure 3(c¢) for distances of
10 and 50 km from the source of emission (Curves 7 and 8, respec-
tively).
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Let us now attempt to draw qualitative conclusions on how the
signal-noise ratio changes in passing through the receiving cir-
cuit. As was already mentioned, both methods are equivalent in /20%
relation to external interference. However, different types of
internal interference have different effects, since they are con-
nected at various points on the diagrams as shown in Figures 1(a)
and 1(b).

In the diagram (Fig. la), the "connection" of interference
takes place at point 4 in tabulation of the signal. It can be
seen from an examinatior of the spectral properties of the signals,
interference and receiving circuit (Fig. 3) that, in the passage
of signals and interference through filter 3 (Fig. 1b) there can
only be a worsening of the signal-noise ratio, because the signal
is richer in higher frequencies than the interference under in-
vestigation (a particular worsening can be expected for high-
frequency signals of the leader discharge type for lightning).
Thus, we can conclude that the introduction of an additional pro-
cessing can result in substantial errors in the final result,
which are absent in using the second method--the method of direct
recording. However, when there is detuning between the distance
over which the signal has come and the distance by which the fil-
ter is tuned, and when the second method is used, we must carry
out an additional analysis of the signal in order to compute the
corrections for detuning, which is also equivalent to the connec-
tion of some additional interference at point 4 on Figure 1(b).
However, if filter 3 is tuned at a rather great distance, e.g.,

50 km, then the basic filtration, i.e., separation of the low-
frequency part of the signal spectrum, 1s already carried out by
filter 3 with the frequemncy characteristic presented on Figure 83c
(Curve 7 or 8), while the operation carried out on the signal with
the digital computer 5 is equivalent to filtration by some filter
whose fregquency characteristic is also represented in Figure 3(c)
for some detuning (Curve 9). From examining the frequency pro-
perties of the signal Up(t) and Figure 3(c), we can conclude that
the latter operation changes the signal-noise ratio very little

and only brings about some correction for the form of the signal
Up(t) due to the detuning. Thus, the connection of "interference"
(additional processing) behind filter 3 decreases the error in the
final resul+s substantially, compared to the first method. There-
fore, we can draw a definite conclusion concerning the advan :age

of the second method--the method of direct recording with the aid
of filters--in relation to the accuracy and interference resistance.
Moreover, this method has an indisputable advantage in terms of the
clarity of the data and the speed at which it is obtained.

The conclusion we have derived may seem strange since, at first
glance, both methods are physically equivalent if we disregard the
effect of interference, because the operation carried out on the
digital computer in using the first method (Fig. la) is equivalent
to the linear filtration by filter 3 in using the second method
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(Fig. 1b). However, the internal interference and limitedness of
the dynamic range for the oscillographic recording have different
effects on the final results, depending on whether or not they are
imposed on the signal before or after Ffilter 3 (Fig. 1), which
changed the spectral composition of the signal substantially.

Let us present some quantitative evaluations of the effect of /20
the noise of data samplings on the restoration of dipole moments

by the method of numerical calculations. TFor this, we will cal-
culate the change in dispersion of white noise in its passage
through the filter with pulse characteristics of (3). If we com-

pare these results to the attenuation of typical atmospherics by
the same filter, then we can use the following expression to eval-
uate the relative errors due to the noise of sampling of the data:

/DBHX 1
P () YT
VDu 7o) ¥ aF FE0, (7)
Ezmax
where
ef 2 3 1
F(x)-—=1~e*(Tsin2£§-x+7é;san3x+1);
x = at3; Doyt is the known dispersion at the output of the filter;

Din is the dispersion of noise at the input of the antennaj; AF =
50 KHz is the band width of the recording apparatus; Ppax 1s the
maximum value of the dipole moment P(t); Ez pax is the mazimum
amplitude of the signal E,(t); fy is the frequency of the maximum

spectral density of the atmospherics; fy = 5%?' is the limit fre-

quency of filter 335 r is the distance to the emission sourcej; t
is the time for observation, starting with the beginning of the
signal.

Errors
r, Sor . X=qaf, B

KM KHz t=03msec fm=0KHz fm=]0KH ‘fm=l5KHZ
. Z ]

10 5 9,5 0,3 1,2 2.7
20 y 5.3 4.8 a9 as 8
50 D) 19 3 12 o
100 0.5 0.9 5 20 45
200 0.25 0,45 6.2 25 56

The graph for the function F(x) is shown in Figure 4, It
demonstrates how the error increases with an increase iIn the ob-
servation time. The results of calculations according to (7) for
a moment of time of 300 usec with bandwidths of the recording
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apparatus of 50 KHz given in the Table show by what factor the
relative error in calculating the dipole moment exceeds the rel-
ative error in the measurements. The calculations were made for
the principal (fy; = 5 and 10 KHz) and leader (fyp = 15 KHz) light-
ning discharges. The errors increase with an increase in the
distance, particularly for short-period signals. If we take a
value equal to 5% for the average error in recording the forms of
the atmospherics, then we can see that, for long-period atmo-
spherics with maximum spectral density occurring in the range of
5 KHz, the reduction of dipole moments in calculations with accu-
racy up to 30% can possibly be up to 160 km, while that for short-
period ones is only up to 20 km.

I~

f D) Calculations evaluating the

ok effect of errors in sampling the

’ data when using the method of direct

recording (Fig. 1b) show that the

ask relative error in determining the

! dipole moment increases by no more
than a factor of 1.4, compared to

! ! ! ; 1 the relative errors in measuring

3 4 5 X .
0 ' 2 * the signal Up(t), even for detuning
by 50%. The calculations were
Fig., 4. carried out for a moment of time

300 usec after the beginning of
the signal, for filters tuned by 50 and 100 km. It can be seen
from a comparison of the data presented in the Table that, under
the same conditions, the error in the method of numerical calcula-
tions increases by a factor of 5-45., This indicates that the
method of direct recording by the aid of filters has a definite
advantage.

Section 2. Preliminary Results of Experimental Studies

The purpose of our experimental studies was to find the valid-
ity of using the model for lightning discharge and to define 1its
principal characteristics. We will present only the preliminary
results; they touch mainly on a clarification of the dipolar nature
of the source. The principal results of the experiments will be
published at a later time.

The experimental study was carried out at Voyeykovo, part of
the Leningrad region, in the summer, when local storms were ob-
served in radius of 200 km. The dipole and current moments of the
discharges were reduced both with the aid of numerical calculations
according to the oscillograms of the vertical component of the
electrical field and by the method of direct recording with the
aid of filters.

In order to find the nature of the source, we carried out
calculations of the dinole moments of synchronous atmospherics




recorded by the receiving site of the Main Geophysical Observatory /2
at Voyeykovo and Roshchino (Curves 1 and 2 on Fig. 5, respectively).
A comparison of the dipole moments of the synchronous atmospherics,
with accuracy up to the experimental error, showed that the dipole
model for the lightning discharge as the emitter of electromagnetic
waves at distances greater than 30 km was valid. The calculations
were carried out for 12 pairs of synchronous atmospherics, and the
distances they spanned changed from 30 to 140 km. The errors in

the oscillographic recording were equal to 5% in this case, while
the errors in determining the distance with the bearing network

of the Main Geophysical Observatory were 10%.

P, coulomb - km

1 1
0 50 100 150 t,y%sec

Fig. 5.

We used the arrangement whose blocks-diagram is given in
Figure 6 in order to determine the dipole and current moments of
the discharges by the method of direct recording.

The signal was received on a collapsible-whip antenna 1 of a
10 m-length and through a remote cathode follower 2 to the delay
line 3, and then through the amplifier 4 to filters 5 and 6, for
separation of the dipole and current moments. The signals whose
amplitude was proportional to the dipole and current moments of
the source were photographed from the screen of a dual-beam os-
cillograph 7 equipped with photographic adjuster 8. The scanning
of the oscillograph 7 was started up by a threshold device 9.
The correction for detuning between the Ffilter alignment and the
real distance to the lightning discharge, determined with the aid
of the bearing network of the Main Geophysical Observatory imeni
Voyeykovo [4], was carried out by calculations on a digital com-
puter. The oscillograms of the dipole and current moments of dis- /2
charges recorded experimentally with the aid of filters tuned for
a distance of 50 km are shown in Figures 7(a) and 7(b), respectively;
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the results of calculations of corrections for detuning are also
depicted there by the dotted line. As can be seen from the figure,
they are not very great, particularly for the current moments, and
they often can be disregarded. The average values for the maxima

g
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6
Fig. 6.
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Fig. 7.

of the dipole and current moments were determined; they were found

to be equal to 3 coulomb-km for the dipole moment and 32 ka-km for

the current moment. They were recorded at the start level for

scanning + 1-0.8 V/m, and it was mainly the principal lightning
discharges with greatest amplitude which were recorded. We should /208
point out the characteristic features of the shape of the dipole
moments--the presence of a bend in the curves. This can be ex-
plained in terms of the superposition of two processes with dipole
moments which have different speeds of change in time. Two stages
can be separated: a rapid one with maximum dipole moment at 80-120
usec causing the signal which, naturally, is called the atmospherics
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(this stage can be connected with the movement of the discharge
along the channel), and a slow one, with maximum dipole at 500-
880 usec, which is possible the source of the low-frequency part
of the atmospherics--the so-called "tail". In physical terms, it
is due to the dissipation of the charged column around the channel
of the discharge.

Conclusions

Two methods of studying the dipole and current moments of
lightning discharges are described in this study. Definite ad-
vantages in using the method of direct recording with the aid of
filters, particularly for short-period signals, are demonstrated.
By restoration of dipole moments according to synchronous oscillo-
grams, the validity of using the dipole moment for a lightning
discharge as the emitter of electromagnetic waves at distances
greater than 30 km is shown. The dipole and current moments of
the principal discharges are presented.

In conclusion, I would like to express my appreciation to
G.I. Makarov and V.V. Novikov for thelr attention and help in the
study, as well as the co-workers of the Division of Atmospheric
Electricity of the Main Geophysical Observatory imeni A.I. Voyeykovo
for kindly lending us oscillograms of synchronous atmospherics and
data on the direction-finding of neighboring storms.
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